merged InstructionTuning and RerankFinetuning into Finetuning.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>
This commit is contained in:
Ye, Xinyu
2025-03-04 01:13:18 -05:00
parent 7b3a125bdf
commit 641f60c76c
12 changed files with 355 additions and 423 deletions

91
Finetuning/README.md Normal file
View File

@@ -0,0 +1,91 @@
# Finetuning
This example includes instruction tuning and rerank model finetuning. Instruction tuning is the process of further training LLMs on a dataset consisting of (instruction, output) pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. Rerank model finetuning is the process of further training rerank model on a dataset for improving its capability on specific field. The implementation of this example deploys a Ray cluster for the task.
## Deploy Finetuning Service
### Deploy Finetuning Service on Xeon
Refer to the [Xeon Guide](./docker_compose/intel/cpu/xeon/README.md) for detail.
### Deploy Finetuning Service on Gaudi
Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) for detail.
## Consume Finetuning Service
### 1. Upload a training file
#### Instruction tuning dataset example
Download a training file `alpaca_data.json` and upload it to the server with below command, this file can be downloaded in [here](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json):
```bash
# upload a training file
curl http://${your_ip}:8015/v1/files -X POST -H "Content-Type: multipart/form-data" -F "file=@./alpaca_data.json" -F purpose="fine-tune"
```
#### Rerank model finetuning dataset example
Download a toy example training file `toy_finetune_data.jsonl` and upload it to the server with below command, this file can be downloaded in [here](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/toy_finetune_data.jsonl):
```bash
# upload a training file
curl http://${your_ip}:8015/v1/files -X POST -H "Content-Type: multipart/form-data" -F "file=@./toy_finetune_data.jsonl" -F purpose="fine-tune"
```
### 2. Create fine-tuning job
#### Instruction tuning
After a training file like `alpaca_data.json` is uploaded, use the following command to launch a finetuning job using `meta-llama/Llama-2-7b-chat-hf` as base model:
```bash
# create a finetuning job
curl http://${your_ip}:8015/v1/fine_tuning/jobs \
-X POST \
-H "Content-Type: application/json" \
-d '{
"training_file": "alpaca_data.json",
"model": "meta-llama/Llama-2-7b-chat-hf"
}'
```
The outputs of the finetune job (adapter_model.safetensors, adapter_config,json... ) are stored in `/home/user/comps/finetuning/src/output` and other execution logs are stored in `/home/user/ray_results`
#### Rerank model finetuning
After a training file `toy_finetune_data.jsonl` is uploaded, use the following command to launch a finetuning job using `BAAI/bge-reranker-large` as base model:
```bash
# create a finetuning job
curl http://${your_ip}:8015/v1/fine_tuning/jobs \
-X POST \
-H "Content-Type: application/json" \
-d '{
"training_file": "toy_finetune_data.jsonl",
"model": "BAAI/bge-reranker-large",
"General":{
"task":"rerank",
"lora_config":null
}
}'
```
### 3. Manage fine-tuning job
Below commands show how to list finetuning jobs, retrieve a finetuning job, cancel a finetuning job and list checkpoints of a finetuning job.
```bash
# list finetuning jobs
curl http://${your_ip}:8015/v1/fine_tuning/jobs -X GET
# retrieve one finetuning job
curl http://${your_ip}:8015/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
# cancel one finetuning job
curl http://${your_ip}:8015/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
# list checkpoints of a finetuning job
curl http://${your_ip}:8015/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
```

View File

@@ -0,0 +1,26 @@
# Deploy Finetuning Service on Xeon
This document outlines the deployment process for a finetuning Service utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice on Intel Xeon server. The steps include Docker image creation, container deployment. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
### 1. Build Docker Image
Build docker image with below command:
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
export HF_TOKEN=${your_huggingface_token}
docker build -t opea/finetuning:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg HF_TOKEN=$HF_TOKEN -f comps/finetuning/src/Dockerfile .
```
### 2. Run Docker with CLI
Start docker container with below command:
```bash
docker run -d --name="finetuning-server" -p 8015:8015 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/finetuning:latest
```

View File

@@ -0,0 +1,26 @@
# Deploy Finetuning Service on Gaudi
This document outlines the deployment process for a finetuning Service utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice on Intel Gaudi server. The steps include Docker image creation, container deployment. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
### 1. Build Docker Image
Build docker image with below command:
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/finetuning-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/finetuning/src/Dockerfile.intel_hpu .
```
### 2. Run Docker with CLI
Start docker container with below command:
```bash
export HF_TOKEN=${your_huggingface_token}
docker run --runtime=habana -e HABANA_VISIBLE_DEVICES=all -p 8015:8015 -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host -e https_proxy=$https_proxy -e http_proxy=$http_proxy -e no_proxy=$no_proxy -e HF_TOKEN=$HF_TOKEN opea/finetuning-gaudi:latest
```

View File

@@ -0,0 +1,22 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
finetuning:
build:
args:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
no_proxy: ${no_proxy}
context: GenAIComps
dockerfile: comps/finetuning/src/Dockerfile
image: ${REGISTRY:-opea}/finetuning:${TAG:-latest}
finetuning-gaudi:
build:
args:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
no_proxy: ${no_proxy}
context: GenAIComps
dockerfile: comps/finetuning/src/Dockerfile.intel_hpu
image: ${REGISTRY:-opea}/finetuning-gaudi:${TAG:-latest}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long