Set no wrapper ChatQnA as default (#891)
Signed-off-by: lvliang-intel <liang1.lv@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -19,7 +19,8 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
|
||||
@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_guardrails.py /home/user/chatqna_guardrails.py
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
@@ -31,4 +32,4 @@ WORKDIR /home/user
|
||||
|
||||
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_guardrails.py"]
|
||||
ENTRYPOINT ["python", "chatqna.py", "--with-guardrails"]
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
git \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
chown -R user /home/user/
|
||||
|
||||
WORKDIR /home/user/
|
||||
RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
USER user
|
||||
|
||||
WORKDIR /home/user
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_no_wrapper.py"]
|
||||
@@ -1,31 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
git \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
chown -R user /home/user/
|
||||
|
||||
WORKDIR /home/user/
|
||||
RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_no_wrapper.py /home/user/chatqna_no_wrapper.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
USER user
|
||||
|
||||
WORKDIR /home/user
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_no_wrapper.py", "--without-rerank"]
|
||||
@@ -6,9 +6,9 @@
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
git \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev \
|
||||
git
|
||||
libjemalloc-dev
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
@@ -19,9 +19,10 @@ RUN git clone https://github.com/opea-project/GenAIComps.git
|
||||
|
||||
WORKDIR /home/user/GenAIComps
|
||||
RUN pip install --no-cache-dir --upgrade pip && \
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt && \
|
||||
pip install --no-cache-dir langchain_core
|
||||
|
||||
COPY ./chatqna_without_rerank.py /home/user/chatqna_without_rerank.py
|
||||
COPY ./chatqna.py /home/user/chatqna.py
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps
|
||||
|
||||
@@ -31,4 +32,4 @@ WORKDIR /home/user
|
||||
|
||||
RUN echo 'ulimit -S -n 999999' >> ~/.bashrc
|
||||
|
||||
ENTRYPOINT ["python", "chatqna_without_rerank.py"]
|
||||
ENTRYPOINT ["python", "chatqna.py", "--without-rerank"]
|
||||
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -327,7 +327,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -345,7 +345,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -345,7 +345,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -345,7 +345,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -345,7 +345,7 @@ spec:
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: qna-config
|
||||
image: opea/tei-gaudi:latest
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
imagePullPolicy: IfNotPresent
|
||||
name: reranking-dependency-deploy
|
||||
ports:
|
||||
@@ -1,34 +1,276 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
|
||||
class ChatTemplate:
|
||||
@staticmethod
|
||||
def generate_rag_prompt(question, documents):
|
||||
context_str = "\n".join(documents)
|
||||
if context_str and len(re.findall("[\u4E00-\u9FFF]", context_str)) / len(context_str) >= 0.3:
|
||||
# chinese context
|
||||
template = """
|
||||
### 你将扮演一个乐于助人、尊重他人并诚实的助手,你的目标是帮助用户解答问题。有效地利用来自本地知识库的搜索结果。确保你的回答中只包含相关信息。如果你不确定问题的答案,请避免分享不准确的信息。
|
||||
### 搜索结果:{context}
|
||||
### 问题:{question}
|
||||
### 回答:
|
||||
"""
|
||||
else:
|
||||
template = """
|
||||
### You are a helpful, respectful and honest assistant to help the user with questions. \
|
||||
Please refer to the search results obtained from the local knowledge base. \
|
||||
But be careful to not incorporate the information that you think is not relevant to the question. \
|
||||
If you don't know the answer to a question, please don't share false information. \n
|
||||
### Search results: {context} \n
|
||||
### Question: {question} \n
|
||||
### Answer:
|
||||
"""
|
||||
return template.format(context=context_str, question=question)
|
||||
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
|
||||
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 9090))
|
||||
EMBEDDING_SERVER_HOST_IP = os.getenv("EMBEDDING_SERVER_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVER_PORT = int(os.getenv("EMBEDDING_SERVER_PORT", 6006))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVICE_PORT = int(os.getenv("RERANK_SERVICE_PORT", 8000))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
RERANK_SERVER_HOST_IP = os.getenv("RERANK_SERVER_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVER_PORT = int(os.getenv("RERANK_SERVER_PORT", 8808))
|
||||
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 9009))
|
||||
|
||||
|
||||
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
||||
inputs["inputs"] = inputs["text"]
|
||||
del inputs["text"]
|
||||
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
||||
# prepare the retriever params
|
||||
retriever_parameters = kwargs.get("retriever_parameters", None)
|
||||
if retriever_parameters:
|
||||
inputs.update(retriever_parameters.dict())
|
||||
elif self.services[cur_node].service_type == ServiceType.LLM:
|
||||
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
|
||||
next_inputs = {}
|
||||
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
|
||||
next_inputs["messages"] = [{"role": "user", "content": inputs["inputs"]}]
|
||||
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
|
||||
next_inputs["top_p"] = llm_parameters_dict["top_p"]
|
||||
next_inputs["stream"] = inputs["streaming"]
|
||||
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
|
||||
next_inputs["presence_penalty"] = inputs["presence_penalty"]
|
||||
next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
|
||||
next_inputs["temperature"] = inputs["temperature"]
|
||||
inputs = next_inputs
|
||||
return inputs
|
||||
|
||||
|
||||
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
next_data = {}
|
||||
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
||||
assert isinstance(data, list)
|
||||
next_data = {"text": inputs["inputs"], "embedding": data[0]}
|
||||
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
||||
|
||||
docs = [doc["text"] for doc in data["retrieved_docs"]]
|
||||
|
||||
with_rerank = runtime_graph.downstream(cur_node)[0].startswith("rerank")
|
||||
if with_rerank and docs:
|
||||
# forward to rerank
|
||||
# prepare inputs for rerank
|
||||
next_data["query"] = data["initial_query"]
|
||||
next_data["texts"] = [doc["text"] for doc in data["retrieved_docs"]]
|
||||
else:
|
||||
# forward to llm
|
||||
if not docs and with_rerank:
|
||||
# delete the rerank from retriever -> rerank -> llm
|
||||
for ds in reversed(runtime_graph.downstream(cur_node)):
|
||||
for nds in runtime_graph.downstream(ds):
|
||||
runtime_graph.add_edge(cur_node, nds)
|
||||
runtime_graph.delete_node_if_exists(ds)
|
||||
|
||||
# handle template
|
||||
# if user provides template, then format the prompt with it
|
||||
# otherwise, use the default template
|
||||
prompt = data["initial_query"]
|
||||
chat_template = llm_parameters_dict["chat_template"]
|
||||
if chat_template:
|
||||
prompt_template = PromptTemplate.from_template(chat_template)
|
||||
input_variables = prompt_template.input_variables
|
||||
if sorted(input_variables) == ["context", "question"]:
|
||||
prompt = prompt_template.format(question=data["initial_query"], context="\n".join(docs))
|
||||
elif input_variables == ["question"]:
|
||||
prompt = prompt_template.format(question=data["initial_query"])
|
||||
else:
|
||||
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
||||
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
||||
else:
|
||||
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
||||
|
||||
next_data["inputs"] = prompt
|
||||
|
||||
elif self.services[cur_node].service_type == ServiceType.RERANK:
|
||||
# rerank the inputs with the scores
|
||||
reranker_parameters = kwargs.get("reranker_parameters", None)
|
||||
top_n = reranker_parameters.top_n if reranker_parameters else 1
|
||||
docs = inputs["texts"]
|
||||
reranked_docs = []
|
||||
for best_response in data[:top_n]:
|
||||
reranked_docs.append(docs[best_response["index"]])
|
||||
|
||||
# handle template
|
||||
# if user provides template, then format the prompt with it
|
||||
# otherwise, use the default template
|
||||
prompt = inputs["query"]
|
||||
chat_template = llm_parameters_dict["chat_template"]
|
||||
if chat_template:
|
||||
prompt_template = PromptTemplate.from_template(chat_template)
|
||||
input_variables = prompt_template.input_variables
|
||||
if sorted(input_variables) == ["context", "question"]:
|
||||
prompt = prompt_template.format(question=prompt, context="\n".join(docs))
|
||||
elif input_variables == ["question"]:
|
||||
prompt = prompt_template.format(question=prompt)
|
||||
else:
|
||||
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
||||
prompt = ChatTemplate.generate_rag_prompt(prompt, docs)
|
||||
else:
|
||||
prompt = ChatTemplate.generate_rag_prompt(prompt, docs)
|
||||
|
||||
next_data["inputs"] = prompt
|
||||
|
||||
else:
|
||||
next_data = data
|
||||
|
||||
return next_data
|
||||
|
||||
|
||||
def align_generator(self, gen, **kwargs):
|
||||
# openai reaponse format
|
||||
# b'data:{"id":"","object":"text_completion","created":1725530204,"model":"meta-llama/Meta-Llama-3-8B-Instruct","system_fingerprint":"2.0.1-native","choices":[{"index":0,"delta":{"role":"assistant","content":"?"},"logprobs":null,"finish_reason":null}]}\n\n'
|
||||
for line in gen:
|
||||
line = line.decode("utf-8")
|
||||
start = line.find("{")
|
||||
end = line.rfind("}") + 1
|
||||
|
||||
json_str = line[start:end]
|
||||
try:
|
||||
# sometimes yield empty chunk, do a fallback here
|
||||
json_data = json.loads(json_str)
|
||||
if json_data["choices"][0]["finish_reason"] != "eos_token":
|
||||
yield f"data: {repr(json_data['choices'][0]['delta']['content'].encode('utf-8'))}\n\n"
|
||||
except Exception as e:
|
||||
yield f"data: {repr(json_str.encode('utf-8'))}\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
ServiceOrchestrator.align_inputs = align_inputs
|
||||
ServiceOrchestrator.align_outputs = align_outputs
|
||||
ServiceOrchestrator.align_generator = align_generator
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVICE_HOST_IP,
|
||||
port=EMBEDDING_SERVICE_PORT,
|
||||
endpoint="/v1/embeddings",
|
||||
host=EMBEDDING_SERVER_HOST_IP,
|
||||
port=EMBEDDING_SERVER_PORT,
|
||||
endpoint="/embed",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
|
||||
rerank = MicroService(
|
||||
name="rerank",
|
||||
host=RERANK_SERVER_HOST_IP,
|
||||
port=RERANK_SERVER_PORT,
|
||||
endpoint="/rerank",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RERANK,
|
||||
)
|
||||
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
def add_remote_service_without_rerank(self):
|
||||
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVER_HOST_IP,
|
||||
port=EMBEDDING_SERVER_PORT,
|
||||
endpoint="/embed",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
def add_remote_service_with_guardrails(self):
|
||||
guardrail_in = MicroService(
|
||||
name="guardrail_in",
|
||||
host=GUARDRAIL_SERVICE_HOST_IP,
|
||||
port=GUARDRAIL_SERVICE_PORT,
|
||||
endpoint="/v1/guardrails",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.GUARDRAIL,
|
||||
)
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVER_HOST_IP,
|
||||
port=EMBEDDING_SERVER_PORT,
|
||||
endpoint="/embed",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
@@ -42,27 +284,49 @@ class ChatQnAService:
|
||||
)
|
||||
rerank = MicroService(
|
||||
name="rerank",
|
||||
host=RERANK_SERVICE_HOST_IP,
|
||||
port=RERANK_SERVICE_PORT,
|
||||
endpoint="/v1/reranking",
|
||||
host=RERANK_SERVER_HOST_IP,
|
||||
port=RERANK_SERVER_PORT,
|
||||
endpoint="/rerank",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RERANK,
|
||||
)
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVICE_HOST_IP,
|
||||
port=LLM_SERVICE_PORT,
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
|
||||
# guardrail_out = MicroService(
|
||||
# name="guardrail_out",
|
||||
# host=GUARDRAIL_SERVICE_HOST_IP,
|
||||
# port=GUARDRAIL_SERVICE_PORT,
|
||||
# endpoint="/v1/guardrails",
|
||||
# use_remote_service=True,
|
||||
# service_type=ServiceType.GUARDRAIL,
|
||||
# )
|
||||
# self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm).add(guardrail_out)
|
||||
self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm)
|
||||
self.megaservice.flow_to(guardrail_in, embedding)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
# self.megaservice.flow_to(llm, guardrail_out)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--without-rerank", action="store_true")
|
||||
parser.add_argument("--with-guardrails", action="store_true")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
if args.without_rerank:
|
||||
chatqna.add_remote_service_without_rerank()
|
||||
elif args.with_guardrails:
|
||||
chatqna.add_remote_service_with_guardrails()
|
||||
else:
|
||||
chatqna.add_remote_service()
|
||||
|
||||
@@ -30,21 +30,11 @@ opea_micro_services:
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
model-id: ${EMBEDDING_MODEL_ID}
|
||||
embedding:
|
||||
host: ${EMBEDDING_SERVICE_HOST_IP}
|
||||
ports: ${EMBEDDING_SERVICE_PORT}
|
||||
image: opea/embedding-tei:latest
|
||||
endpoint: /v1/embeddings
|
||||
retrieval:
|
||||
host: ${RETRIEVER_SERVICE_HOST_IP}
|
||||
ports: ${RETRIEVER_SERVICE_PORT}
|
||||
image: opea/retriever-redis:latest
|
||||
endpoint: /v1/retrieval
|
||||
reranking:
|
||||
host: ${RERANK_SERVICE_HOST_IP}
|
||||
ports: ${RERANK_SERVICE_PORT}
|
||||
image: opea/reranking-tei:latest
|
||||
endpoint: /v1/reranking
|
||||
tgi-service:
|
||||
host: ${TGI_SERVICE_IP}
|
||||
ports: ${TGI_SERVICE_PORT}
|
||||
@@ -64,11 +54,6 @@ opea_micro_services:
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
model-id: ${LLM_MODEL_ID}
|
||||
llm:
|
||||
host: ${LLM_SERVICE_HOST_IP}
|
||||
ports: ${LLM_SERVICE_PORT}
|
||||
image: opea/llm-tgi:latest
|
||||
endpoint: /v1/chat/completions
|
||||
ui:
|
||||
host: ${UI_SERVICE_HOST_IP}
|
||||
ports:
|
||||
|
||||
@@ -1,89 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
|
||||
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 9090))
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVICE_PORT = int(os.getenv("RERANK_SERVICE_PORT", 8000))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
guardrail_in = MicroService(
|
||||
name="guardrail_in",
|
||||
host=GUARDRAIL_SERVICE_HOST_IP,
|
||||
port=GUARDRAIL_SERVICE_PORT,
|
||||
endpoint="/v1/guardrails",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.GUARDRAIL,
|
||||
)
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVICE_HOST_IP,
|
||||
port=EMBEDDING_SERVICE_PORT,
|
||||
endpoint="/v1/embeddings",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
rerank = MicroService(
|
||||
name="rerank",
|
||||
host=RERANK_SERVICE_HOST_IP,
|
||||
port=RERANK_SERVICE_PORT,
|
||||
endpoint="/v1/reranking",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RERANK,
|
||||
)
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVICE_HOST_IP,
|
||||
port=LLM_SERVICE_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
# guardrail_out = MicroService(
|
||||
# name="guardrail_out",
|
||||
# host=GUARDRAIL_SERVICE_HOST_IP,
|
||||
# port=GUARDRAIL_SERVICE_PORT,
|
||||
# endpoint="/v1/guardrails",
|
||||
# use_remote_service=True,
|
||||
# service_type=ServiceType.GUARDRAIL,
|
||||
# )
|
||||
# self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm).add(guardrail_out)
|
||||
self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm)
|
||||
self.megaservice.flow_to(guardrail_in, embedding)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
# self.megaservice.flow_to(llm, guardrail_out)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
@@ -1,275 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
|
||||
class ChatTemplate:
|
||||
@staticmethod
|
||||
def generate_rag_prompt(question, documents):
|
||||
context_str = "\n".join(documents)
|
||||
if context_str and len(re.findall("[\u4E00-\u9FFF]", context_str)) / len(context_str) >= 0.3:
|
||||
# chinese context
|
||||
template = """
|
||||
### 你将扮演一个乐于助人、尊重他人并诚实的助手,你的目标是帮助用户解答问题。有效地利用来自本地知识库的搜索结果。确保你的回答中只包含相关信息。如果你不确定问题的答案,请避免分享不准确的信息。
|
||||
### 搜索结果:{context}
|
||||
### 问题:{question}
|
||||
### 回答:
|
||||
"""
|
||||
else:
|
||||
template = """
|
||||
### You are a helpful, respectful and honest assistant to help the user with questions. \
|
||||
Please refer to the search results obtained from the local knowledge base. \
|
||||
But be careful to not incorporate the information that you think is not relevant to the question. \
|
||||
If you don't know the answer to a question, please don't share false information. \n
|
||||
### Search results: {context} \n
|
||||
### Question: {question} \n
|
||||
### Answer:
|
||||
"""
|
||||
return template.format(context=context_str, question=question)
|
||||
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
# EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
# EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
# RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
# RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
# RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
||||
# RERANK_SERVICE_PORT = int(os.getenv("RERANK_SERVICE_PORT", 8000))
|
||||
# LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
# LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
EMBEDDING_SERVER_HOST_IP = os.getenv("EMBEDDING_SERVER_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVER_PORT = int(os.getenv("EMBEDDING_SERVER_PORT", 6006))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
RERANK_SERVER_HOST_IP = os.getenv("RERANK_SERVER_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVER_PORT = int(os.getenv("RERANK_SERVER_PORT", 8808))
|
||||
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 9009))
|
||||
|
||||
|
||||
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
||||
inputs["inputs"] = inputs["text"]
|
||||
del inputs["text"]
|
||||
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
||||
# prepare the retriever params
|
||||
retriever_parameters = kwargs.get("retriever_parameters", None)
|
||||
if retriever_parameters:
|
||||
inputs.update(retriever_parameters.dict())
|
||||
elif self.services[cur_node].service_type == ServiceType.LLM:
|
||||
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
|
||||
next_inputs = {}
|
||||
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
|
||||
next_inputs["messages"] = [{"role": "user", "content": inputs["inputs"]}]
|
||||
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
|
||||
next_inputs["top_p"] = llm_parameters_dict["top_p"]
|
||||
next_inputs["stream"] = inputs["streaming"]
|
||||
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
|
||||
next_inputs["presence_penalty"] = inputs["presence_penalty"]
|
||||
next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
|
||||
next_inputs["temperature"] = inputs["temperature"]
|
||||
inputs = next_inputs
|
||||
|
||||
return inputs
|
||||
|
||||
|
||||
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
|
||||
next_data = {}
|
||||
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
||||
assert isinstance(data, list)
|
||||
next_data = {"text": inputs["inputs"], "embedding": data[0]}
|
||||
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
||||
|
||||
docs = [doc["text"] for doc in data["retrieved_docs"]]
|
||||
|
||||
with_rerank = runtime_graph.downstream(cur_node)[0].startswith("rerank")
|
||||
if with_rerank and docs:
|
||||
# forward to rerank
|
||||
# prepare inputs for rerank
|
||||
next_data["query"] = data["initial_query"]
|
||||
next_data["texts"] = [doc["text"] for doc in data["retrieved_docs"]]
|
||||
else:
|
||||
# forward to llm
|
||||
if not docs and with_rerank:
|
||||
# delete the rerank from retriever -> rerank -> llm
|
||||
for ds in reversed(runtime_graph.downstream(cur_node)):
|
||||
for nds in runtime_graph.downstream(ds):
|
||||
runtime_graph.add_edge(cur_node, nds)
|
||||
runtime_graph.delete_node_if_exists(ds)
|
||||
|
||||
# handle template
|
||||
# if user provides template, then format the prompt with it
|
||||
# otherwise, use the default template
|
||||
prompt = data["initial_query"]
|
||||
chat_template = llm_parameters_dict["chat_template"]
|
||||
if chat_template:
|
||||
prompt_template = PromptTemplate.from_template(chat_template)
|
||||
input_variables = prompt_template.input_variables
|
||||
if sorted(input_variables) == ["context", "question"]:
|
||||
prompt = prompt_template.format(question=data["initial_query"], context="\n".join(docs))
|
||||
elif input_variables == ["question"]:
|
||||
prompt = prompt_template.format(question=data["initial_query"])
|
||||
else:
|
||||
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
||||
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
||||
else:
|
||||
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
||||
|
||||
next_data["inputs"] = prompt
|
||||
|
||||
elif self.services[cur_node].service_type == ServiceType.RERANK:
|
||||
# rerank the inputs with the scores
|
||||
reranker_parameters = kwargs.get("reranker_parameters", None)
|
||||
top_n = reranker_parameters.top_n if reranker_parameters else 1
|
||||
docs = inputs["texts"]
|
||||
reranked_docs = []
|
||||
for best_response in data[:top_n]:
|
||||
reranked_docs.append(docs[best_response["index"]])
|
||||
|
||||
# handle template
|
||||
# if user provides template, then format the prompt with it
|
||||
# otherwise, use the default template
|
||||
prompt = inputs["query"]
|
||||
chat_template = llm_parameters_dict["chat_template"]
|
||||
if chat_template:
|
||||
prompt_template = PromptTemplate.from_template(chat_template)
|
||||
input_variables = prompt_template.input_variables
|
||||
if sorted(input_variables) == ["context", "question"]:
|
||||
prompt = prompt_template.format(question=prompt, context="\n".join(docs))
|
||||
elif input_variables == ["question"]:
|
||||
prompt = prompt_template.format(question=prompt)
|
||||
else:
|
||||
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
||||
prompt = ChatTemplate.generate_rag_prompt(prompt, docs)
|
||||
else:
|
||||
prompt = ChatTemplate.generate_rag_prompt(prompt, docs)
|
||||
|
||||
next_data["inputs"] = prompt
|
||||
|
||||
return next_data
|
||||
|
||||
|
||||
def align_generator(self, gen, **kwargs):
|
||||
# openai reaponse format
|
||||
# b'data:{"id":"","object":"text_completion","created":1725530204,"model":"meta-llama/Meta-Llama-3-8B-Instruct","system_fingerprint":"2.0.1-native","choices":[{"index":0,"delta":{"role":"assistant","content":"?"},"logprobs":null,"finish_reason":null}]}\n\n'
|
||||
for line in gen:
|
||||
line = line.decode("utf-8")
|
||||
start = line.find("{")
|
||||
end = line.rfind("}") + 1
|
||||
|
||||
json_str = line[start:end]
|
||||
try:
|
||||
# sometimes yield empty chunk, do a fallback here
|
||||
json_data = json.loads(json_str)
|
||||
if json_data["choices"][0]["finish_reason"] != "eos_token":
|
||||
yield f"data: {repr(json_data['choices'][0]['delta']['content'].encode('utf-8'))}\n\n"
|
||||
except Exception as e:
|
||||
yield f"data: {repr(json_str.encode('utf-8'))}\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
ServiceOrchestrator.align_inputs = align_inputs
|
||||
ServiceOrchestrator.align_outputs = align_outputs
|
||||
ServiceOrchestrator.align_generator = align_generator
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVER_HOST_IP,
|
||||
port=EMBEDDING_SERVER_PORT,
|
||||
endpoint="/embed",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
|
||||
rerank = MicroService(
|
||||
name="rerank",
|
||||
host=RERANK_SERVER_HOST_IP,
|
||||
port=RERANK_SERVER_PORT,
|
||||
endpoint="/rerank",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RERANK,
|
||||
)
|
||||
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
def add_remote_service_without_rerank(self):
|
||||
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVER_HOST_IP,
|
||||
port=EMBEDDING_SERVER_PORT,
|
||||
endpoint="/embed",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVER_HOST_IP,
|
||||
port=LLM_SERVER_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--without-rerank", action="store_true")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
if args.without_rerank:
|
||||
chatqna.add_remote_service_without_rerank()
|
||||
else:
|
||||
chatqna.add_remote_service()
|
||||
@@ -1,57 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
embedding = MicroService(
|
||||
name="embedding",
|
||||
host=EMBEDDING_SERVICE_HOST_IP,
|
||||
port=EMBEDDING_SERVICE_PORT,
|
||||
endpoint="/v1/embeddings",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.EMBEDDING,
|
||||
)
|
||||
retriever = MicroService(
|
||||
name="retriever",
|
||||
host=RETRIEVER_SERVICE_HOST_IP,
|
||||
port=RETRIEVER_SERVICE_PORT,
|
||||
endpoint="/v1/retrieval",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.RETRIEVER,
|
||||
)
|
||||
llm = MicroService(
|
||||
name="llm",
|
||||
host=LLM_SERVICE_HOST_IP,
|
||||
port=LLM_SERVICE_PORT,
|
||||
endpoint="/v1/chat/completions",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(embedding).add(retriever).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
@@ -16,31 +16,19 @@ If you are in a proxy environment, set the proxy-related environment variables:
|
||||
export http_proxy="Your_HTTP_Proxy"
|
||||
export https_proxy="Your_HTTPs_Proxy"
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 2. Build Retriever Image
|
||||
### 1. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Rerank Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Set up Ollama Service and Build LLM Image
|
||||
### 2. Set up Ollama Service and Build LLM Image
|
||||
|
||||
We use [Ollama](https://ollama.com/) as our LLM service for AIPC.
|
||||
|
||||
Please set up Ollama on your PC follow the instructions. This will set the entrypoint needed for the Ollama to suit the ChatQnA examples.
|
||||
|
||||
#### 4.1 Set Up Ollama LLM Service
|
||||
#### 2.1 Set Up Ollama LLM Service
|
||||
|
||||
Install Ollama service with one command
|
||||
|
||||
@@ -79,20 +67,20 @@ NAME ID SIZE MODIFIED
|
||||
llama3:latest 365c0bd3c000 4.7 GB 5 days ago
|
||||
```
|
||||
|
||||
#### 4.2 Build LLM Image
|
||||
#### 2.2 Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-ollama:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/ollama/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Dataprep Image
|
||||
### 3. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
|
||||
cd ..
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
### 4. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command:
|
||||
|
||||
@@ -103,7 +91,7 @@ docker build --no-cache -t opea/chatqna:latest -f Dockerfile .
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 7. Build UI Docker Image
|
||||
### 5. Build UI Docker Image
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
@@ -113,15 +101,13 @@ docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 7 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
1. `opea/dataprep-redis:latest`
|
||||
2. `opea/embedding-tei:latest`
|
||||
3. `opea/retriever-redis:latest`
|
||||
4. `opea/reranking-tei:latest`
|
||||
5. `opea/llm-ollama:latest`
|
||||
6. `opea/chatqna:latest`
|
||||
7. `opea/chatqna-ui:latest`
|
||||
2. `opea/retriever-redis:latest`
|
||||
3. `opea/llm-ollama:latest`
|
||||
4. `opea/chatqna:latest`
|
||||
5. `opea/chatqna-ui:latest`
|
||||
|
||||
## 🚀 Start Microservices
|
||||
|
||||
@@ -162,15 +148,14 @@ export https_proxy=${your_http_proxy}
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVER_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVER_HOST_IP=${host_ip}
|
||||
export LLM_SERVER_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
|
||||
|
||||
@@ -184,15 +169,14 @@ export OLLAMA_MODEL="llama3"
|
||||
set EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5
|
||||
set RERANK_MODEL_ID=BAAI/bge-reranker-base
|
||||
set TEI_EMBEDDING_ENDPOINT=http://%host_ip%:6006
|
||||
set TEI_RERANKING_ENDPOINT=http://%host_ip%:8808
|
||||
set REDIS_URL=redis://%host_ip%:6379
|
||||
set INDEX_NAME=rag-redis
|
||||
set HUGGINGFACEHUB_API_TOKEN=%your_hf_api_token%
|
||||
set MEGA_SERVICE_HOST_IP=%host_ip%
|
||||
set EMBEDDING_SERVICE_HOST_IP=%host_ip%
|
||||
set EMBEDDING_SERVER_HOST_IP=%host_ip%
|
||||
set RETRIEVER_SERVICE_HOST_IP=%host_ip%
|
||||
set RERANK_SERVICE_HOST_IP=%host_ip%
|
||||
set LLM_SERVICE_HOST_IP=%host_ip%
|
||||
set RERANK_SERVER_HOST_IP=%host_ip%
|
||||
set LLM_SERVER_HOST_IP=%host_ip%
|
||||
set BACKEND_SERVICE_ENDPOINT=http://%host_ip%:8888/v1/chatqna
|
||||
set DATAPREP_SERVICE_ENDPOINT=http://%host_ip%:6007/v1/dataprep
|
||||
|
||||
@@ -231,16 +215,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. Embedding Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6000/v1/embeddings\
|
||||
-X POST \
|
||||
-d '{"text":"hello"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. Retriever Microservice
|
||||
2. Retriever Microservice
|
||||
To validate the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script:
|
||||
|
||||
```bash
|
||||
@@ -251,7 +226,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
4. TEI Reranking Service
|
||||
3. TEI Reranking Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8808/rerank \
|
||||
@@ -260,22 +235,13 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
5. Reranking Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8000/v1/reranking\
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
6. Ollama Service
|
||||
4. Ollama Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:11434/api/generate -d '{"model": "llama3", "prompt":"What is Deep Learning?"}'
|
||||
```
|
||||
|
||||
7. LLM Microservice
|
||||
5. LLM Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:9000/v1/chat/completions\
|
||||
@@ -284,7 +250,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
8. MegaService
|
||||
6. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
@@ -292,7 +258,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
}'
|
||||
```
|
||||
|
||||
9. Dataprep Microservice(Optional)
|
||||
7. Dataprep Microservice(Optional)
|
||||
|
||||
If you want to update the default knowledge base, you can use the following commands:
|
||||
|
||||
|
||||
@@ -36,20 +36,6 @@ services:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -82,23 +68,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-aipc-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-ollama
|
||||
container_name: llm-ollama
|
||||
@@ -121,10 +90,8 @@ services:
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
@@ -133,10 +100,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVICE_PORT:-6006}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVICE_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVICE_PORT:-9000}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-aipc-ui-server:
|
||||
|
||||
@@ -97,61 +97,20 @@ After launching your instance, you can connect to it using SSH (for Linux instan
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 2. Build Retriever Image
|
||||
### 1. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Rerank Image
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build LLM Image
|
||||
|
||||
#### Use TGI as backend
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
#### Use vLLM as backend
|
||||
|
||||
Build vLLM docker.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd ./vllm/
|
||||
docker build --no-cache -t opea/vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.cpu .
|
||||
cd ..
|
||||
```
|
||||
|
||||
Build microservice.
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Dataprep Image
|
||||
### 2. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
|
||||
cd ..
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
### 3. Build MegaService Docker Image
|
||||
|
||||
1. MegaService with Rerank
|
||||
|
||||
@@ -173,7 +132,7 @@ cd ..
|
||||
docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank .
|
||||
```
|
||||
|
||||
### 7. Build UI Docker Image
|
||||
### 4. Build UI Docker Image
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
@@ -182,7 +141,7 @@ cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
### 8. Build Conversational React UI Docker Image (Optional)
|
||||
### 5. Build Conversational React UI Docker Image (Optional)
|
||||
|
||||
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
|
||||
|
||||
@@ -193,23 +152,20 @@ cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||
```
|
||||
|
||||
### 9. Build Nginx Docker Image
|
||||
### 6. Build Nginx Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
1. `opea/dataprep-redis:latest`
|
||||
2. `opea/embedding-tei:latest`
|
||||
3. `opea/retriever-redis:latest`
|
||||
4. `opea/reranking-tei:latest`
|
||||
5. `opea/llm-tgi:latest` or `opea/llm-vllm:latest`
|
||||
6. `opea/chatqna:latest` or `opea/chatqna-without-rerank:latest`
|
||||
7. `opea/chatqna-ui:latest`
|
||||
8. `opea/nginx:latest`
|
||||
2. `opea/retriever-redis:latest`
|
||||
3. `opea/chatqna:latest` or `opea/chatqna-without-rerank:latest`
|
||||
4. `opea/chatqna-ui:latest`
|
||||
5. `opea/nginx:latest`
|
||||
|
||||
## 🚀 Start Microservices
|
||||
|
||||
@@ -315,16 +271,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. Embedding Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6000/v1/embeddings\
|
||||
-X POST \
|
||||
-d '{"text":"hello"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. Retriever Microservice
|
||||
2. Retriever Microservice
|
||||
|
||||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector
|
||||
is determined by the embedding model.
|
||||
@@ -340,7 +287,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
4. TEI Reranking Service
|
||||
3. TEI Reranking Service
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
@@ -351,18 +298,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
5. Reranking Microservice
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8000/v1/reranking\
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
6. LLM backend Service
|
||||
4. LLM backend Service
|
||||
|
||||
In first startup, this service will take more time to download the model files. After it's finished, the service will be ready.
|
||||
|
||||
@@ -395,31 +331,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-d '{"model": "Intel/neural-chat-7b-v3-3", "prompt": "What is Deep Learning?", "max_tokens": 32, "temperature": 0}'
|
||||
```
|
||||
|
||||
7. LLM Microservice
|
||||
|
||||
This service depends on above LLM backend service startup. It will be ready after long time, to wait for them being ready in first startup.
|
||||
|
||||
```bash
|
||||
# TGI service
|
||||
curl http://${host_ip}:9000/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
For parameters in TGI modes, please refer to [HuggingFace InferenceClient API](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation) (except we rename "max_new_tokens" to "max_tokens".)
|
||||
|
||||
```bash
|
||||
# vLLM Service
|
||||
curl http://${host_ip}:9000/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_p":1,"temperature":0.7,"frequency_penalty":0,"presence_penalty":0, "streaming":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
For parameters in vLLM modes, can refer to [LangChain VLLMOpenAI API](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.vllm.VLLMOpenAI.html)
|
||||
|
||||
8. MegaService
|
||||
5. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
@@ -427,7 +339,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
}'
|
||||
```
|
||||
|
||||
9. Nginx Service
|
||||
6. Nginx Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:${NGINX_PORT}/v1/chatqna \
|
||||
@@ -435,7 +347,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-d '{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
```
|
||||
|
||||
10. Dataprep Microservice(Optional)
|
||||
7. Dataprep Microservice(Optional)
|
||||
|
||||
If you want to update the default knowledge base, you can use the following commands:
|
||||
|
||||
|
||||
@@ -70,38 +70,20 @@ git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 2. Build Retriever Image
|
||||
### 1. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-qdrant:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/qdrant/haystack/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Rerank Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .`
|
||||
```
|
||||
|
||||
### 4. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Dataprep Image
|
||||
### 2. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-qdrant:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/qdrant/langchain/Dockerfile .
|
||||
cd ..
|
||||
```
|
||||
|
||||
### 6. Build MegaService Docker Image
|
||||
### 3. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command:
|
||||
|
||||
@@ -112,7 +94,7 @@ docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_pr
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 7. Build UI Docker Image
|
||||
### 4. Build UI Docker Image
|
||||
|
||||
Build frontend Docker image via below command:
|
||||
|
||||
@@ -122,7 +104,7 @@ docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 8. Build Conversational React UI Docker Image (Optional)
|
||||
### 5. Build Conversational React UI Docker Image (Optional)
|
||||
|
||||
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
|
||||
|
||||
@@ -136,15 +118,12 @@ docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 7 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 4 Docker Images:
|
||||
|
||||
1. `opea/dataprep-qdrant:latest`
|
||||
2. `opea/embedding-tei:latest`
|
||||
3. `opea/retriever-qdrant:latest`
|
||||
4. `opea/reranking-tei:latest`
|
||||
5. `opea/llm-tgi:latest`
|
||||
6. `opea/chatqna:latest`
|
||||
7. `opea/chatqna-ui:latest`
|
||||
2. `opea/retriever-qdrant:latest`
|
||||
3. `opea/chatqna:latest`
|
||||
4. `opea/chatqna-ui:latest`
|
||||
|
||||
## 🚀 Start Microservices
|
||||
|
||||
@@ -194,17 +173,15 @@ export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6040"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:6041"
|
||||
export TGI_LLM_ENDPOINT="http://${host_ip}:6042"
|
||||
export QDRANT_HOST=${host_ip}
|
||||
export QDRANT_PORT=6333
|
||||
export INDEX_NAME="rag-qdrant"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export EMBEDDING_SERVER_HOST_IP=${host_ip}
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVER_HOST_IP=${host_ip}
|
||||
export LLM_SERVER_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8912/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6043/v1/dataprep"
|
||||
```
|
||||
@@ -234,16 +211,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. Embedding Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6044/v1/embeddings\
|
||||
-X POST \
|
||||
-d '{"text":"hello"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. Retriever Microservice
|
||||
2. Retriever Microservice
|
||||
|
||||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector
|
||||
is determined by the embedding model.
|
||||
@@ -259,7 +227,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
4. TEI Reranking Service
|
||||
3. TEI Reranking Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6041/rerank \
|
||||
@@ -268,16 +236,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
5. Reranking Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6046/v1/reranking\
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
6. TGI Service
|
||||
4. TGI Service
|
||||
|
||||
In first startup, this service will take more time to download the model files. After it's finished, the service will be ready.
|
||||
|
||||
@@ -302,16 +261,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
7. LLM Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6047/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
8. MegaService
|
||||
5. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8912/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
@@ -319,7 +269,7 @@ For details on how to verify the correctness of the response, refer to [how-to-v
|
||||
}'
|
||||
```
|
||||
|
||||
9. Dataprep Microservice(Optional)
|
||||
6. Dataprep Microservice(Optional)
|
||||
|
||||
If you want to update the default knowledge base, you can use the following commands:
|
||||
|
||||
|
||||
@@ -38,20 +38,6 @@ services:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -85,23 +71,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-xeon-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
|
||||
container_name: tgi-service
|
||||
@@ -118,36 +87,16 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-xeon-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- dataprep-redis-service
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -155,10 +104,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-6006}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-9009}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-ui-server:
|
||||
@@ -178,25 +131,6 @@ services:
|
||||
- DELETE_FILE=${DATAPREP_DELETE_FILE_ENDPOINT}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-nginx-server:
|
||||
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
|
||||
container_name: chaqna-xeon-nginx-server
|
||||
depends_on:
|
||||
- chaqna-xeon-backend-server
|
||||
- chaqna-xeon-ui-server
|
||||
ports:
|
||||
- "${NGINX_PORT:-80}:80"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- FRONTEND_SERVICE_IP=${FRONTEND_SERVICE_IP}
|
||||
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
|
||||
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
|
||||
- BACKEND_SERVICE_IP=${BACKEND_SERVICE_IP}
|
||||
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
|
||||
@@ -1,184 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
redis-vector-db:
|
||||
image: redis/redis-stack:7.2.0-v9
|
||||
container_name: redis-vector-db
|
||||
ports:
|
||||
- "6379:6379"
|
||||
- "8001:8001"
|
||||
dataprep-redis-service:
|
||||
image: ${REGISTRY:-opea}/dataprep-redis:${TAG:-latest}
|
||||
container_name: dataprep-redis-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6007:6007"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
REDIS_URL: ${REDIS_URL}
|
||||
REDIS_HOST: ${REDIS_HOST}
|
||||
INDEX_NAME: ${INDEX_NAME}
|
||||
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
tei-embedding-service:
|
||||
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
container_name: tei-embedding-server
|
||||
ports:
|
||||
- "6006:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
# embedding:
|
||||
# image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
# container_name: embedding-tei-server
|
||||
# depends_on:
|
||||
# - tei-embedding-service
|
||||
# ports:
|
||||
# - "6000:6000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
# restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
ports:
|
||||
- "7000:7000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
REDIS_URL: ${REDIS_URL}
|
||||
INDEX_NAME: ${INDEX_NAME}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
restart: unless-stopped
|
||||
tei-reranking-service:
|
||||
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
container_name: tei-reranking-server
|
||||
ports:
|
||||
- "8808:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
# reranking:
|
||||
# image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
# container_name: reranking-tei-xeon-server
|
||||
# depends_on:
|
||||
# - tei-reranking-service
|
||||
# ports:
|
||||
# - "8000:8000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
# HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
# HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
# HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
# restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "9009:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
# llm:
|
||||
# image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
# container_name: llm-tgi-server
|
||||
# depends_on:
|
||||
# - tgi-service
|
||||
# ports:
|
||||
# - "9000:9000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
# HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
# HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
# HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
# restart: unless-stopped
|
||||
chaqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-no-wrapper:${TAG:-latest}
|
||||
container_name: chatqna-xeon-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
# - embedding
|
||||
- dataprep-redis-service
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
# - reranking
|
||||
- tgi-service
|
||||
# - llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-ui-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-ui:${TAG:-latest}
|
||||
container_name: chatqna-xeon-ui-server
|
||||
depends_on:
|
||||
- chaqna-xeon-backend-server
|
||||
ports:
|
||||
- "5173:5173"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- CHAT_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
|
||||
- UPLOAD_FILE_BASE_URL=${DATAPREP_SERVICE_ENDPOINT}
|
||||
- GET_FILE=${DATAPREP_GET_FILE_ENDPOINT}
|
||||
- DELETE_FILE=${DATAPREP_DELETE_FILE_ENDPOINT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -38,20 +38,6 @@ services:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6044:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-qdrant:${TAG:-latest}
|
||||
container_name: retriever-qdrant-server
|
||||
@@ -84,23 +70,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-xeon-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "6046:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
|
||||
container_name: tgi-service
|
||||
@@ -117,35 +86,15 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "6047:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-xeon-backend-server
|
||||
depends_on:
|
||||
- qdrant-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8912:8888"
|
||||
environment:
|
||||
@@ -153,14 +102,15 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_PORT=${EMBEDDING_SERVICE_PORT}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-6040}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RETRIEVER_SERVICE_PORT=${RETRIEVER_SERVICE_PORT}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_PORT=${RERANK_SERVICE_PORT}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
|
||||
- RETRIEVER_SERVICE_PORT=${RETRIEVER_SERVICE_PORT:-6045}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-6041}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-6042}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-ui-server:
|
||||
|
||||
@@ -37,23 +37,6 @@ services:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-embedding-service"
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -90,26 +73,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-xeon-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-reranking-service"
|
||||
restart: unless-stopped
|
||||
vllm_service:
|
||||
image: ${REGISTRY:-opea}/vllm:${TAG:-latest}
|
||||
container_name: vllm-service
|
||||
@@ -125,39 +88,15 @@ services:
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
command: --model $LLM_MODEL_ID --host 0.0.0.0 --port 80
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-vllm:${TAG:-latest}
|
||||
container_name: llm-vllm-server
|
||||
depends_on:
|
||||
- vllm_service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
vLLM_ENDPOINT: ${vLLM_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
LLM_MODEL: ${LLM_MODEL_ID}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
|
||||
LANGCHAIN_TRACING_V2: ${LANGCHAIN_TRACING_V2}
|
||||
LANGCHAIN_PROJECT: "opea-llm-service"
|
||||
restart: unless-stopped
|
||||
chaqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-xeon-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- vllm_service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -165,10 +104,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-6006}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-9009}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-ui-server:
|
||||
|
||||
@@ -38,20 +38,6 @@ services:
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -85,34 +71,15 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-xeon-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-without-rerank:${TAG:-latest}
|
||||
container_name: chatqna-xeon-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- dataprep-redis-service
|
||||
- retriever
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -120,9 +87,12 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-6006}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-9009}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-xeon-ui-server:
|
||||
|
||||
@@ -8,17 +8,14 @@ export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${host_ip}:9009"
|
||||
export vLLM_LLM_ENDPOINT="http://${host_ip}:9009"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export REDIS_HOST=${host_ip}
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVER_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVER_HOST_IP=${host_ip}
|
||||
export LLM_SERVER_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
|
||||
|
||||
@@ -70,73 +70,19 @@ curl http://${host_ip}:8888/v1/chatqna \
|
||||
|
||||
First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.
|
||||
|
||||
### 1. Build Embedding Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 2. Build Retriever Image
|
||||
### 1. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Rerank Image
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build LLM Image
|
||||
|
||||
You can use different LLM serving solutions, choose one of following four options.
|
||||
|
||||
#### 4.1 Use TGI
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
#### 4.2 Use VLLM
|
||||
|
||||
Build vllm docker.
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-vllm-hpu:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/langchain/dependency/Dockerfile.intel_hpu .
|
||||
```
|
||||
|
||||
Build microservice docker.
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
#### 4.3 Use VLLM-on-Ray
|
||||
|
||||
Build vllm-on-ray docker.
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-vllm-ray-hpu:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/ray/dependency/Dockerfile .
|
||||
```
|
||||
|
||||
Build microservice docker.
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-vllm-ray:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/ray/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build Dataprep Image
|
||||
### 2. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build Guardrails Docker Image (Optional)
|
||||
### 3. Build Guardrails Docker Image (Optional)
|
||||
|
||||
To fortify AI initiatives in production, Guardrails microservice can secure model inputs and outputs, building Trustworthy, Safe, and Secure LLM-based Applications.
|
||||
|
||||
@@ -144,7 +90,7 @@ To fortify AI initiatives in production, Guardrails microservice can secure mode
|
||||
docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/guardrails/llama_guard/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 7. Build MegaService Docker Image
|
||||
### 4. Build MegaService Docker Image
|
||||
|
||||
1. MegaService with Rerank
|
||||
|
||||
@@ -176,7 +122,7 @@ docker build -t opea/guardrails-tgi:latest --build-arg https_proxy=$https_proxy
|
||||
docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank .
|
||||
```
|
||||
|
||||
### 8. Build UI Docker Image
|
||||
### 5. Build UI Docker Image
|
||||
|
||||
Construct the frontend Docker image using the command below:
|
||||
|
||||
@@ -185,7 +131,7 @@ cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||
```
|
||||
|
||||
### 9. Build Conversational React UI Docker Image (Optional)
|
||||
### 6. Build Conversational React UI Docker Image (Optional)
|
||||
|
||||
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
|
||||
|
||||
@@ -196,21 +142,18 @@ cd GenAIExamples/ChatQnA/ui
|
||||
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||
```
|
||||
|
||||
### 10. Build Nginx Docker Image
|
||||
### 7. Build Nginx Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
- `opea/embedding-tei:latest`
|
||||
- `opea/retriever-redis:latest`
|
||||
- `opea/reranking-tei:latest`
|
||||
- `opea/llm-tgi:latest` or `opea/llm-vllm:latest` or `opea/llm-vllm-ray:latest`
|
||||
- `opea/dataprep-redis:latest`
|
||||
- `opea/chatqna:latest` or `opea/chatqna-guardrails:latest` or `opea/chatqna-without-rerank:latest`
|
||||
- `opea/chatqna:latest`
|
||||
- `opea/chatqna-ui:latest`
|
||||
- `opea/nginx:latest`
|
||||
|
||||
@@ -338,16 +281,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. Embedding Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6000/v1/embeddings \
|
||||
-X POST \
|
||||
-d '{"text":"hello"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. Retriever Microservice
|
||||
2. Retriever Microservice
|
||||
|
||||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector
|
||||
is determined by the embedding model.
|
||||
@@ -363,7 +297,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
4. TEI Reranking Service
|
||||
3. TEI Reranking Service
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
@@ -374,18 +308,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
5. Reranking Microservice
|
||||
|
||||
> Skip for ChatQnA without Rerank pipeline
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8000/v1/reranking \
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
6. LLM backend Service
|
||||
4. LLM backend Service
|
||||
|
||||
In first startup, this service will take more time to download the model files. After it's finished, the service will be ready.
|
||||
|
||||
@@ -430,39 +353,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
-d '{"model": "${LLM_MODEL_ID}", "messages": [{"role": "user", "content": "What is Deep Learning?"}]}'
|
||||
```
|
||||
|
||||
7. LLM Microservice
|
||||
|
||||
```bash
|
||||
# TGI service
|
||||
curl http://${host_ip}:9000/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
For parameters in TGI mode, please refer to [HuggingFace InferenceClient API](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation) (except we rename "max_new_tokens" to "max_tokens".)
|
||||
|
||||
```bash
|
||||
# vLLM Service
|
||||
curl http://${host_ip}:9000/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_p":1,"temperature":0.7,"frequency_penalty":0,"presence_penalty":0, "streaming":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
For parameters in vLLM Mode, can refer to [LangChain VLLMOpenAI API](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.vllm.VLLMOpenAI.html)
|
||||
|
||||
```bash
|
||||
# vLLM-on-Ray Service
|
||||
curl http://${host_ip}:9000/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"presence_penalty":1.03","streaming":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
For parameters in vLLM-on-Ray mode, can refer to [LangChain ChatOpenAI API](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html)
|
||||
|
||||
8. MegaService
|
||||
5. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
@@ -470,7 +361,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
}'
|
||||
```
|
||||
|
||||
9. Nginx Service
|
||||
6. Nginx Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:${NGINX_PORT}/v1/chatqna \
|
||||
@@ -478,7 +369,7 @@ For validation details, please refer to [how-to-validate_service](./how_to_valid
|
||||
-d '{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
```
|
||||
|
||||
10. Dataprep Microservice(Optional)
|
||||
7. Dataprep Microservice(Optional)
|
||||
|
||||
If you want to update the default knowledge base, you can use the following commands:
|
||||
|
||||
@@ -547,7 +438,7 @@ curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
|
||||
-H "Content-Type: application/json"
|
||||
```
|
||||
|
||||
10. Guardrails (Optional)
|
||||
8. Guardrails (Optional)
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:9090/v1/guardrails\
|
||||
|
||||
@@ -39,26 +39,12 @@ services:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_DEVICES: ${tei_embedding_devices}
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
MAX_WARMUP_SEQUENCE_LENGTH: 512
|
||||
INIT_HCCL_ON_ACQUIRE: 0
|
||||
ENABLE_EXPERIMENTAL_FLAGS: true
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -90,23 +76,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-gaudi-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-gaudi-server
|
||||
@@ -121,7 +90,7 @@ services:
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_DEVICES: ${llm_service_devices}
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
@@ -131,36 +100,16 @@ services:
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-gaudi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 2048 --max-total-tokens 4096
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -168,10 +117,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8005}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
@@ -191,25 +144,6 @@ services:
|
||||
- DELETE_FILE=${DATAPREP_DELETE_FILE_ENDPOINT}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-nginx-server:
|
||||
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
|
||||
container_name: chaqna-gaudi-nginx-server
|
||||
depends_on:
|
||||
- chaqna-gaudi-backend-server
|
||||
- chaqna-gaudi-ui-server
|
||||
ports:
|
||||
- "${NGINX_PORT:-80}:80"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- FRONTEND_SERVICE_IP=${FRONTEND_SERVICE_IP}
|
||||
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
|
||||
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
|
||||
- BACKEND_SERVICE_IP=${BACKEND_SERVICE_IP}
|
||||
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
|
||||
@@ -82,20 +82,6 @@ services:
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
MAX_WARMUP_SEQUENCE_LENGTH: 512
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -127,23 +113,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-gaudi-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-gaudi-server
|
||||
@@ -169,23 +138,6 @@ services:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-gaudi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-guardrails:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-guardrails-server
|
||||
@@ -194,12 +146,9 @@ services:
|
||||
- tgi-guardrails-service
|
||||
- guardrails
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -208,10 +157,15 @@ services:
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- GUARDRAIL_SERVICE_HOST_IP=${GUARDRAIL_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- GUARDRAIL_SERVICE_PORT=${GUARDRAIL_SERVICE_PORT:-9090}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8005}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
|
||||
@@ -1,201 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
redis-vector-db:
|
||||
image: redis/redis-stack:7.2.0-v9
|
||||
container_name: redis-vector-db
|
||||
ports:
|
||||
- "6379:6379"
|
||||
- "8001:8001"
|
||||
dataprep-redis-service:
|
||||
image: ${REGISTRY:-opea}/dataprep-redis:${TAG:-latest}
|
||||
container_name: dataprep-redis-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6007:6007"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
REDIS_URL: ${REDIS_URL}
|
||||
INDEX_NAME: ${INDEX_NAME}
|
||||
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
tei-embedding-service:
|
||||
image: ghcr.io/huggingface/tei-gaudi:latest
|
||||
container_name: tei-embedding-gaudi-server
|
||||
ports:
|
||||
- "8090:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
MAX_WARMUP_SEQUENCE_LENGTH: 512
|
||||
INIT_HCCL_ON_ACQUIRE: 0
|
||||
ENABLE_EXPERIMENTAL_FLAGS: true
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
# embedding:
|
||||
# image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
# container_name: embedding-tei-server
|
||||
# depends_on:
|
||||
# - tei-embedding-service
|
||||
# ports:
|
||||
# - "6000:6000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
# restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
ports:
|
||||
- "7000:7000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
REDIS_URL: ${REDIS_URL}
|
||||
INDEX_NAME: ${INDEX_NAME}
|
||||
restart: unless-stopped
|
||||
tei-reranking-service:
|
||||
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
container_name: tei-reranking-gaudi-server
|
||||
ports:
|
||||
- "8808:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
# reranking:
|
||||
# image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
# container_name: reranking-tei-gaudi-server
|
||||
# depends_on:
|
||||
# - tei-reranking-service
|
||||
# ports:
|
||||
# - "8000:8000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
# HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
# HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
# HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
# restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
container_name: tgi-gaudi-server
|
||||
ports:
|
||||
- "8005:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 2048 --max-total-tokens 4096
|
||||
# llm:
|
||||
# image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
# container_name: llm-tgi-gaudi-server
|
||||
# depends_on:
|
||||
# - tgi-service
|
||||
# ports:
|
||||
# - "9000:9000"
|
||||
# ipc: host
|
||||
# environment:
|
||||
# no_proxy: ${no_proxy}
|
||||
# http_proxy: ${http_proxy}
|
||||
# https_proxy: ${https_proxy}
|
||||
# TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
# HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
# HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
# HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
# restart: unless-stopped
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-no-wrapper:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
# - embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
# - reranking
|
||||
- tgi-service
|
||||
# - llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8005}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-ui:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-ui-server
|
||||
depends_on:
|
||||
- chaqna-gaudi-backend-server
|
||||
ports:
|
||||
- "5173:5173"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- CHAT_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
|
||||
- UPLOAD_FILE_BASE_URL=${DATAPREP_SERVICE_ENDPOINT}
|
||||
- GET_FILE=${DATAPREP_GET_FILE_ENDPOINT}
|
||||
- DELETE_FILE=${DATAPREP_DELETE_FILE_ENDPOINT}
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -43,20 +43,6 @@ services:
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
MAX_WARMUP_SEQUENCE_LENGTH: 512
|
||||
command: --model-id ${EMBEDDING_MODEL_ID}
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -88,23 +74,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-gaudi-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
vllm-service:
|
||||
image: ${REGISTRY:-opea}/llm-vllm-hpu:${TAG:-latest}
|
||||
container_name: vllm-gaudi-server
|
||||
@@ -125,34 +94,15 @@ services:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: /bin/bash -c "export VLLM_CPU_KVCACHE_SPACE=40 && python3 -m vllm.entrypoints.openai.api_server --enforce-eager --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80 --block-size 128 --max-num-seqs 256 --max-seq_len-to-capture 2048"
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-vllm:${TAG:-latest}
|
||||
container_name: llm-vllm-gaudi-server
|
||||
depends_on:
|
||||
- vllm-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
vLLM_ENDPOINT: ${vLLM_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
LLM_MODEL: ${LLM_MODEL_ID}
|
||||
restart: unless-stopped
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- vllm-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -160,11 +110,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8007}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
|
||||
@@ -43,20 +43,6 @@ services:
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
MAX_WARMUP_SEQUENCE_LENGTH: 512
|
||||
command: --model-id ${EMBEDDING_MODEL_ID}
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -88,23 +74,6 @@ services:
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-gaudi-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
vllm-ray-service:
|
||||
image: ${REGISTRY:-opea}/llm-vllm-ray-hpu:${TAG:-latest}
|
||||
container_name: vllm-ray-gaudi-server
|
||||
@@ -125,34 +94,15 @@ services:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: /bin/bash -c "ray start --head && python vllm_ray_openai.py --port_number 8000 --model_id_or_path $LLM_MODEL_ID --tensor_parallel_size 2 --enforce_eager True"
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-vllm-ray:${TAG:-latest}
|
||||
container_name: llm-vllm-ray-gaudi-server
|
||||
depends_on:
|
||||
- vllm-ray-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
vLLM_RAY_ENDPOINT: ${vLLM_RAY_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
LLM_MODEL: ${LLM_MODEL_ID}
|
||||
restart: unless-stopped
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- vllm-ray-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -160,11 +110,14 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- RERANK_SERVICE_HOST_IP=${RERANK_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_PORT=${LLM_SERVICE_PORT}
|
||||
- RERANK_SERVER_HOST_IP=${RERANK_SERVER_HOST_IP}
|
||||
- RERANK_SERVER_PORT=${RERANK_SERVER_PORT:-8808}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8006}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
|
||||
@@ -45,20 +45,6 @@ services:
|
||||
INIT_HCCL_ON_ACQUIRE: 0
|
||||
ENABLE_EXPERIMENTAL_FLAGS: true
|
||||
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -99,33 +85,14 @@ services:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-gaudi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-gaudi-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna-without-rerank:${TAG:-latest}
|
||||
container_name: chatqna-gaudi-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
@@ -133,9 +100,12 @@ services:
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVICE_HOST_IP=${EMBEDDING_SERVICE_HOST_IP}
|
||||
- EMBEDDING_SERVER_HOST_IP=${EMBEDDING_SERVER_HOST_IP}
|
||||
- EMBEDDING_SERVER_PORT=${EMBEDDING_SERVER_PORT:-8090}
|
||||
- RETRIEVER_SERVICE_HOST_IP=${RETRIEVER_SERVICE_HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
|
||||
- LLM_SERVER_HOST_IP=${LLM_SERVER_HOST_IP}
|
||||
- LLM_SERVER_PORT=${LLM_SERVER_PORT:-8005}
|
||||
- LOGFLAG=${LOGFLAG}
|
||||
ipc: host
|
||||
restart: always
|
||||
chaqna-gaudi-ui-server:
|
||||
|
||||
@@ -26,14 +26,6 @@ The warning messages point out the veriabls are **NOT** set.
|
||||
|
||||
```
|
||||
ubuntu@gaudi-vm:~/GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi$ docker compose -f ./compose.yaml up -d
|
||||
WARN[0000] The "LANGCHAIN_API_KEY" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_TRACING_V2" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_API_KEY" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_TRACING_V2" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_API_KEY" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_TRACING_V2" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_API_KEY" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] The "LANGCHAIN_TRACING_V2" variable is not set. Defaulting to a blank string.
|
||||
WARN[0000] /home/ubuntu/GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/compose.yaml: `version` is obsolete
|
||||
```
|
||||
|
||||
@@ -172,24 +164,7 @@ This test the embedding service. It sends "What is Deep Learning?" to the embedd
|
||||
|
||||
**Note**: The vector dimension are decided by the embedding model and the output value is dependent on model and input data.
|
||||
|
||||
### 2 Embedding Microservice
|
||||
|
||||
```
|
||||
curl http://${host_ip}:6000/v1/embeddings\
|
||||
-X POST \
|
||||
-d '{"text":"What is Deep Learning?"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
This test the embedding microservice. In this test, it sends out `What is Deep Learning?` to embedding.
|
||||
Embedding microservice get input data, call embedding service to embedding data.
|
||||
Embedding server are with NO state, but microservice keep the state. There is `id` in the output of `Embedding Microservice`.
|
||||
|
||||
```
|
||||
{"id":"e8c85e588a235a4bc4747a23b3a71d8f","text":"What is Deep Learning?","embedding":[0.00030903306,-0.06356524,0.0025720573,-0.012404448,0.050649878, ..., 0.02776986,-0.0246678,0.03999176,0.037477136,-0.006806653,0.02261455,-0.04570737,-0.033122733,0.022785513,0.0160026,-0.021343587,-0.029969815,-0.0049176104]}
|
||||
```
|
||||
|
||||
### 3 Retriever Microservice
|
||||
### 2 Retriever Microservice
|
||||
|
||||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script.
|
||||
The length of embedding vector is determined by the embedding model.
|
||||
@@ -212,7 +187,7 @@ The output is retrieved text that relevant to the input data:
|
||||
|
||||
```
|
||||
|
||||
### 4 TEI Reranking Service
|
||||
### 3 TEI Reranking Service
|
||||
|
||||
Reranking service
|
||||
|
||||
@@ -228,24 +203,7 @@ Output is:
|
||||
|
||||
It scores the input
|
||||
|
||||
### 5 Reranking Microservice
|
||||
|
||||
```
|
||||
curl http://${host_ip}:8000/v1/reranking\
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
Here is the output:
|
||||
|
||||
```
|
||||
{"id":"e1eb0e44f56059fc01aa0334b1dac313","query":"Human: Answer the question based only on the following context:\n Deep learning is...\n Question: What is Deep Learning?","max_new_tokens":1024,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}
|
||||
```
|
||||
|
||||
You may notice reranking microservice are with state ('ID' and other meta data), while reranking service are not.
|
||||
|
||||
### 6 TGI Service
|
||||
### 4 TGI Service
|
||||
|
||||
```
|
||||
curl http://${host_ip}:8008/generate \
|
||||
@@ -277,56 +235,7 @@ and the log shows model warm up, please wait for a while and try it later.
|
||||
2024-06-05T05:45:27.867833811Z 2024-06-05T05:45:27.867759Z INFO text_generation_router: router/src/main.rs:221: Warming up model
|
||||
```
|
||||
|
||||
### 7 LLM Microservice
|
||||
|
||||
```
|
||||
curl http://${host_ip}:9000/v1/chat/completions\
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
You will get generated text from LLM:
|
||||
|
||||
```
|
||||
data: b'\n'
|
||||
|
||||
data: b'\n'
|
||||
|
||||
data: b'Deep'
|
||||
|
||||
data: b' learning'
|
||||
|
||||
data: b' is'
|
||||
|
||||
data: b' a'
|
||||
|
||||
data: b' subset'
|
||||
|
||||
data: b' of'
|
||||
|
||||
data: b' machine'
|
||||
|
||||
data: b' learning'
|
||||
|
||||
data: b' that'
|
||||
|
||||
data: b' uses'
|
||||
|
||||
data: b' algorithms'
|
||||
|
||||
data: b' to'
|
||||
|
||||
data: b' learn'
|
||||
|
||||
data: b' from'
|
||||
|
||||
data: b' data'
|
||||
|
||||
data: [DONE]
|
||||
```
|
||||
|
||||
### 8 MegaService
|
||||
### 5 MegaService
|
||||
|
||||
```
|
||||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
|
||||
@@ -8,15 +8,13 @@ export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${host_ip}:8005"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVER_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVER_HOST_IP=${host_ip}
|
||||
export LLM_SERVER_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
|
||||
|
||||
@@ -77,37 +77,19 @@ git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
```
|
||||
|
||||
### 2. Build Embedding Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build Retriever Image
|
||||
### 2. Build Retriever Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 4. Build Rerank Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
|
||||
```
|
||||
|
||||
### 5. Build LLM Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
|
||||
```
|
||||
|
||||
### 6. Build Dataprep Image
|
||||
### 3. Build Dataprep Image
|
||||
|
||||
```bash
|
||||
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
### 7. Build MegaService Docker Image
|
||||
### 4. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build the MegaService Docker image using the command below:
|
||||
|
||||
@@ -118,7 +100,7 @@ docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_pr
|
||||
cd ../../..
|
||||
```
|
||||
|
||||
### 8. Build UI Docker Image
|
||||
### 5. Build UI Docker Image
|
||||
|
||||
Construct the frontend Docker image using the command below:
|
||||
|
||||
@@ -128,7 +110,7 @@ docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 9. Build React UI Docker Image (Optional)
|
||||
### 6. Build React UI Docker Image (Optional)
|
||||
|
||||
Construct the frontend Docker image using the command below:
|
||||
|
||||
@@ -138,23 +120,20 @@ docker build --no-cache -t opea/chatqna-react-ui:latest --build-arg https_proxy=
|
||||
cd ../../../..
|
||||
```
|
||||
|
||||
### 10. Build Nginx Docker Image
|
||||
### 7. Build Nginx Docker Image
|
||||
|
||||
```bash
|
||||
cd GenAIComps
|
||||
docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following 8 Docker Images:
|
||||
Then run the command `docker images`, you will have the following 5 Docker Images:
|
||||
|
||||
1. `opea/embedding-tei:latest`
|
||||
2. `opea/retriever-redis:latest`
|
||||
3. `opea/reranking-tei:latest`
|
||||
4. `opea/llm-tgi:latest`
|
||||
5. `opea/dataprep-redis:latest`
|
||||
6. `opea/chatqna:latest`
|
||||
7. `opea/chatqna-ui:latest` or `opea/chatqna-react-ui:latest`
|
||||
8. `opea/nginx:latest`
|
||||
1. `opea/retriever-redis:latest`
|
||||
2. `opea/dataprep-redis:latest`
|
||||
3. `opea/chatqna:latest`
|
||||
4. `opea/chatqna-ui:latest` or `opea/chatqna-react-ui:latest`
|
||||
5. `opea/nginx:latest`
|
||||
|
||||
## 🚀 Start MicroServices and MegaService
|
||||
|
||||
@@ -215,16 +194,7 @@ docker compose up -d
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. Embedding Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:6000/v1/embeddings \
|
||||
-X POST \
|
||||
-d '{"text":"hello"}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. Retriever Microservice
|
||||
2. Retriever Microservice
|
||||
|
||||
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector
|
||||
is determined by the embedding model.
|
||||
@@ -240,7 +210,7 @@ docker compose up -d
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
4. TEI Reranking Service
|
||||
3. TEI Reranking Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8808/rerank \
|
||||
@@ -249,16 +219,7 @@ docker compose up -d
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
5. Reranking Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8000/v1/reranking \
|
||||
-X POST \
|
||||
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
6. TGI Service
|
||||
4. TGI Service
|
||||
|
||||
In first startup, this service will take more time to download the model files. After it's finished, the service will be ready.
|
||||
|
||||
@@ -283,16 +244,7 @@ docker compose up -d
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
7. LLM Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:9000/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
8. MegaService
|
||||
5. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
|
||||
@@ -300,7 +252,7 @@ docker compose up -d
|
||||
}'
|
||||
```
|
||||
|
||||
9. Nginx Service
|
||||
6. Nginx Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:${NGINX_PORT}/v1/chatqna \
|
||||
@@ -308,7 +260,7 @@ docker compose up -d
|
||||
-d '{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
```
|
||||
|
||||
10. Dataprep Microservice(Optional)
|
||||
7. Dataprep Microservice(Optional)
|
||||
|
||||
If you want to update the default knowledge base, you can use the following commands:
|
||||
|
||||
|
||||
@@ -46,20 +46,6 @@ services:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
embedding:
|
||||
image: ${REGISTRY:-opea}/embedding-tei:${TAG:-latest}
|
||||
container_name: embedding-tei-server
|
||||
depends_on:
|
||||
- tei-embedding-service
|
||||
ports:
|
||||
- "6000:6000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
|
||||
restart: unless-stopped
|
||||
retriever:
|
||||
image: ${REGISTRY:-opea}/retriever-redis:${TAG:-latest}
|
||||
container_name: retriever-redis-server
|
||||
@@ -98,23 +84,6 @@ services:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
reranking:
|
||||
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
|
||||
container_name: reranking-tei-server
|
||||
depends_on:
|
||||
- tei-reranking-service
|
||||
ports:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TEI_RERANKING_ENDPOINT: ${TEI_RERANKING_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.2.0
|
||||
container_name: tgi-server
|
||||
@@ -138,35 +107,15 @@ services:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
llm:
|
||||
image: ${REGISTRY:-opea}/llm-tgi:${TAG:-latest}
|
||||
container_name: llm-tgi-server
|
||||
depends_on:
|
||||
- tgi-service
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
restart: unless-stopped
|
||||
chaqna-backend-server:
|
||||
image: ${REGISTRY:-opea}/chatqna:${TAG:-latest}
|
||||
container_name: chatqna-backend-server
|
||||
depends_on:
|
||||
- redis-vector-db
|
||||
- tei-embedding-service
|
||||
- embedding
|
||||
- retriever
|
||||
- tei-reranking-service
|
||||
- reranking
|
||||
- tgi-service
|
||||
- llm
|
||||
ports:
|
||||
- "8888:8888"
|
||||
environment:
|
||||
|
||||
@@ -8,15 +8,9 @@ export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${host_ip}:8008"
|
||||
export REDIS_URL="redis://${host_ip}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
||||
export RERANK_SERVICE_HOST_IP=${host_ip}
|
||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
|
||||
|
||||
@@ -23,18 +23,6 @@ services:
|
||||
dockerfile: ./Dockerfile.without_rerank
|
||||
extends: chatqna
|
||||
image: ${REGISTRY:-opea}/chatqna-without-rerank:${TAG:-latest}
|
||||
chatqna-no-wrapper:
|
||||
build:
|
||||
context: ../
|
||||
dockerfile: ./Dockerfile.no_wrapper
|
||||
extends: chatqna
|
||||
image: ${REGISTRY:-opea}/chatqna-no-wrapper:${TAG:-latest}
|
||||
chatqna-no-wrapper-without-rerank:
|
||||
build:
|
||||
context: ../
|
||||
dockerfile: ./Dockerfile.no_wrapper_without_rerank
|
||||
extends: chatqna
|
||||
image: ${REGISTRY:-opea}/chatqna-no-wrapper-without-rerank:${TAG:-latest}
|
||||
chatqna-ui:
|
||||
build:
|
||||
context: ../ui
|
||||
|
||||
@@ -16,12 +16,9 @@ The ChatQnA uses the below prebuilt images if you choose a Xeon deployment
|
||||
|
||||
- redis-vector-db: redis/redis-stack:7.2.0-v9
|
||||
- tei_embedding_service: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
- embedding: opea/embedding-tei:latest
|
||||
- retriever: opea/retriever-redis:latest
|
||||
- tei_xeon_service: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
- reranking: opea/reranking-tei:latest
|
||||
- tgi-service: ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu
|
||||
- llm: opea/llm-tgi:latest
|
||||
- chaqna-xeon-backend-server: opea/chatqna:latest
|
||||
|
||||
Should you desire to use the Gaudi accelerator, two alternate images are used for the embedding and llm services.
|
||||
|
||||
@@ -27,27 +27,6 @@ data:
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_EMBEDDING_ENDPOINT: "http://chatqna-tei"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/guardrails-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -72,50 +51,6 @@ data:
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-llm-uservice-config
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TGI_LLM_ENDPOINT: "http://chatqna-tgi"
|
||||
HUGGINGFACEHUB_API_TOKEN: "insert-your-huggingface-token-here"
|
||||
HF_HOME: "/tmp/.cache/huggingface"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_RERANKING_ENDPOINT: "http://chatqna-teirerank"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -208,7 +143,7 @@ metadata:
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
MODEL_ID: "meta-llama/Meta-Llama-Guard-2-8B"
|
||||
PORT: "2080"
|
||||
PORT: "2083"
|
||||
HF_TOKEN: "insert-your-huggingface-token-here"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
@@ -362,31 +297,6 @@ spec:
|
||||
app.kubernetes.io/name: data-prep
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 6000
|
||||
targetPort: 6000
|
||||
protocol: TCP
|
||||
name: embedding-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/guardrails-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -412,31 +322,6 @@ spec:
|
||||
app.kubernetes.io/name: guardrails-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 9000
|
||||
targetPort: 9000
|
||||
protocol: TCP
|
||||
name: llm-uservice
|
||||
selector:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -466,31 +351,6 @@ spec:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
protocol: TCP
|
||||
name: reranking-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -584,7 +444,7 @@ spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 80
|
||||
targetPort: 2080
|
||||
targetPort: 2083
|
||||
protocol: TCP
|
||||
name: tgi
|
||||
selector:
|
||||
@@ -786,39 +646,36 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/deployment.yaml
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
name: chatqna-redis-vector-db
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
helm.sh/chart: redis-vector-db-1.0.0
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/version: "7.2.0-v9"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-embedding-usvc-config
|
||||
- name: redis-vector-db
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
@@ -829,38 +686,35 @@ spec:
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/embedding-tei:latest"
|
||||
image: "redis/redis-stack:7.2.0-v9"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: embedding-usvc
|
||||
containerPort: 6000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: data-volume
|
||||
- mountPath: /redisinsight
|
||||
name: redisinsight-volume
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
ports:
|
||||
- name: redis-service
|
||||
containerPort: 6379
|
||||
protocol: TCP
|
||||
- name: redis-insight
|
||||
containerPort: 8001
|
||||
protocol: TCP
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
tcpSocket:
|
||||
port: 6379 # Probe the Redis port
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
failureThreshold: 120
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: data-volume
|
||||
emptyDir: {}
|
||||
- name: redisinsight-volume
|
||||
emptyDir: {}
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
@@ -942,234 +796,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-llm-uservice-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: false
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/llm-tgi:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: llm-uservice
|
||||
containerPort: 9000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-redis-vector-db
|
||||
labels:
|
||||
helm.sh/chart: redis-vector-db-1.0.0
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "7.2.0-v9"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: redis-vector-db
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "redis/redis-stack:7.2.0-v9"
|
||||
imagePullPolicy: IfNotPresent
|
||||
volumeMounts:
|
||||
- mountPath: /data
|
||||
name: data-volume
|
||||
- mountPath: /redisinsight
|
||||
name: redisinsight-volume
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
ports:
|
||||
- name: redis-service
|
||||
containerPort: 6379
|
||||
protocol: TCP
|
||||
- name: redis-insight
|
||||
containerPort: 8001
|
||||
protocol: TCP
|
||||
startupProbe:
|
||||
tcpSocket:
|
||||
port: 6379 # Probe the Redis port
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
failureThreshold: 120
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: data-volume
|
||||
emptyDir: {}
|
||||
- name: redisinsight-volume
|
||||
emptyDir: {}
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-reranking-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/reranking-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: reranking-usvc
|
||||
containerPort: 8000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1483,7 +1109,7 @@ spec:
|
||||
name: tmp
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 2080
|
||||
containerPort: 2083
|
||||
protocol: TCP
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
@@ -1624,16 +1250,24 @@ spec:
|
||||
containers:
|
||||
- name: chatqna
|
||||
env:
|
||||
- name: LLM_SERVICE_HOST_IP
|
||||
value: chatqna-llm-uservice
|
||||
- name: RERANK_SERVICE_HOST_IP
|
||||
value: chatqna-reranking-usvc
|
||||
- name: LLM_SERVER_HOST_IP
|
||||
value: chatqna-tgi
|
||||
- name: LLM_SERVER_PORT
|
||||
value: "2080"
|
||||
- name: RERANK_SERVER_HOST_IP
|
||||
value: chatqna-teirerank
|
||||
- name: RERANK_SERVER_PORT
|
||||
value: "2082"
|
||||
- name: RETRIEVER_SERVICE_HOST_IP
|
||||
value: chatqna-retriever-usvc
|
||||
- name: EMBEDDING_SERVICE_HOST_IP
|
||||
value: chatqna-embedding-usvc
|
||||
- name: EMBEDDING_SERVER_HOST_IP
|
||||
value: chatqna-tei
|
||||
- name: EMBEDDING_SERVER_PORT
|
||||
value: "2081"
|
||||
- name: GUARDRAIL_SERVICE_HOST_IP
|
||||
value: chatqna-guardrails-usvc
|
||||
- name: GUARDRAIL_SERVICE_PORT
|
||||
value: "9090"
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
|
||||
@@ -27,71 +27,6 @@ data:
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_EMBEDDING_ENDPOINT: "http://chatqna-tei"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-llm-uservice-config
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TGI_LLM_ENDPOINT: "http://chatqna-tgi"
|
||||
HUGGINGFACEHUB_API_TOKEN: "insert-your-huggingface-token-here"
|
||||
HF_HOME: "/tmp/.cache/huggingface"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_RERANKING_ENDPOINT: "http://chatqna-teirerank"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -312,56 +247,6 @@ spec:
|
||||
app.kubernetes.io/name: data-prep
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 6000
|
||||
targetPort: 6000
|
||||
protocol: TCP
|
||||
name: embedding-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 9000
|
||||
targetPort: 9000
|
||||
protocol: TCP
|
||||
name: llm-uservice
|
||||
selector:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -391,31 +276,6 @@ spec:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
protocol: TCP
|
||||
name: reranking-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -686,162 +546,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-embedding-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/embedding-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: embedding-usvc
|
||||
containerPort: 6000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-llm-uservice-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: false
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/llm-tgi:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: llm-uservice
|
||||
containerPort: 9000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -914,84 +618,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-reranking-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/reranking-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: reranking-usvc
|
||||
containerPort: 8000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1366,16 +992,20 @@ spec:
|
||||
containers:
|
||||
- name: chatqna
|
||||
env:
|
||||
- name: LLM_SERVICE_HOST_IP
|
||||
value: chatqna-llm-uservice
|
||||
- name: RERANK_SERVICE_HOST_IP
|
||||
value: chatqna-reranking-usvc
|
||||
- name: LLM_SERVER_HOST_IP
|
||||
value: chatqna-tgi
|
||||
- name: LLM_SERVER_PORT
|
||||
value: "2080"
|
||||
- name: RERANK_SERVER_HOST_IP
|
||||
value: chatqna-teirerank
|
||||
- name: RERANK_SERVER_PORT
|
||||
value: "2082"
|
||||
- name: RETRIEVER_SERVICE_HOST_IP
|
||||
value: chatqna-retriever-usvc
|
||||
- name: EMBEDDING_SERVICE_HOST_IP
|
||||
value: chatqna-embedding-usvc
|
||||
- name: GUARDRAIL_SERVICE_HOST_IP
|
||||
value: chatqna-guardrails-usvc
|
||||
- name: EMBEDDING_SERVER_HOST_IP
|
||||
value: chatqna-tei
|
||||
- name: EMBEDDING_SERVER_PORT
|
||||
value: "2081"
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
|
||||
@@ -27,71 +27,6 @@ data:
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_EMBEDDING_ENDPOINT: "http://chatqna-tei"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-llm-uservice-config
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TGI_LLM_ENDPOINT: "http://chatqna-tgi"
|
||||
HUGGINGFACEHUB_API_TOKEN: "insert-your-huggingface-token-here"
|
||||
HF_HOME: "/tmp/.cache/huggingface"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_RERANKING_ENDPOINT: "http://chatqna-teirerank"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -313,56 +248,6 @@ spec:
|
||||
app.kubernetes.io/name: data-prep
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 6000
|
||||
targetPort: 6000
|
||||
protocol: TCP
|
||||
name: embedding-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 9000
|
||||
targetPort: 9000
|
||||
protocol: TCP
|
||||
name: llm-uservice
|
||||
selector:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -392,31 +277,6 @@ spec:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
protocol: TCP
|
||||
name: reranking-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -687,162 +547,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-embedding-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/embedding-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: embedding-usvc
|
||||
containerPort: 6000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-llm-uservice-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: false
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/llm-tgi:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: llm-uservice
|
||||
containerPort: 9000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -915,84 +619,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-reranking-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/reranking-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: reranking-usvc
|
||||
containerPort: 8000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1369,16 +995,20 @@ spec:
|
||||
containers:
|
||||
- name: chatqna
|
||||
env:
|
||||
- name: LLM_SERVICE_HOST_IP
|
||||
value: chatqna-llm-uservice
|
||||
- name: RERANK_SERVICE_HOST_IP
|
||||
value: chatqna-reranking-usvc
|
||||
- name: LLM_SERVER_HOST_IP
|
||||
value: chatqna-tgi
|
||||
- name: LLM_SERVER_PORT
|
||||
value: "2080"
|
||||
- name: RERANK_SERVER_HOST_IP
|
||||
value: chatqna-teirerank
|
||||
- name: RERANK_SERVER_PORT
|
||||
value: "2082"
|
||||
- name: RETRIEVER_SERVICE_HOST_IP
|
||||
value: chatqna-retriever-usvc
|
||||
- name: EMBEDDING_SERVICE_HOST_IP
|
||||
value: chatqna-embedding-usvc
|
||||
- name: GUARDRAIL_SERVICE_HOST_IP
|
||||
value: chatqna-guardrails-usvc
|
||||
- name: EMBEDDING_SERVER_HOST_IP
|
||||
value: chatqna-tei
|
||||
- name: EMBEDDING_SERVER_PORT
|
||||
value: "2081"
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
|
||||
@@ -27,27 +27,6 @@ data:
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_EMBEDDING_ENDPOINT: "http://chatqna-tei"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/guardrails-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -72,50 +51,6 @@ data:
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-llm-uservice-config
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TGI_LLM_ENDPOINT: "http://chatqna-tgi"
|
||||
HUGGINGFACEHUB_API_TOKEN: "insert-your-huggingface-token-here"
|
||||
HF_HOME: "/tmp/.cache/huggingface"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_RERANKING_ENDPOINT: "http://chatqna-teirerank"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -208,7 +143,7 @@ metadata:
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
MODEL_ID: "meta-llama/Meta-Llama-Guard-2-8B"
|
||||
PORT: "2080"
|
||||
PORT: "2083"
|
||||
HF_TOKEN: "insert-your-huggingface-token-here"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
@@ -364,31 +299,6 @@ spec:
|
||||
app.kubernetes.io/name: data-prep
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 6000
|
||||
targetPort: 6000
|
||||
protocol: TCP
|
||||
name: embedding-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/guardrails-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -414,31 +324,6 @@ spec:
|
||||
app.kubernetes.io/name: guardrails-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 9000
|
||||
targetPort: 9000
|
||||
protocol: TCP
|
||||
name: llm-uservice
|
||||
selector:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -468,31 +353,6 @@ spec:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
protocol: TCP
|
||||
name: reranking-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -586,7 +446,7 @@ spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 80
|
||||
targetPort: 2080
|
||||
targetPort: 2083
|
||||
protocol: TCP
|
||||
name: tgi
|
||||
selector:
|
||||
@@ -788,84 +648,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-embedding-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/embedding-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: embedding-usvc
|
||||
containerPort: 6000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/guardrails-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -944,84 +726,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-llm-uservice-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: false
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/llm-tgi:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: llm-uservice
|
||||
containerPort: 9000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1094,84 +798,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-reranking-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/reranking-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: reranking-usvc
|
||||
containerPort: 8000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1486,7 +1112,7 @@ spec:
|
||||
name: tmp
|
||||
ports:
|
||||
- name: http
|
||||
containerPort: 2080
|
||||
containerPort: 2083
|
||||
protocol: TCP
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
@@ -1629,16 +1255,24 @@ spec:
|
||||
containers:
|
||||
- name: chatqna
|
||||
env:
|
||||
- name: LLM_SERVICE_HOST_IP
|
||||
value: chatqna-llm-uservice
|
||||
- name: RERANK_SERVICE_HOST_IP
|
||||
value: chatqna-reranking-usvc
|
||||
- name: LLM_SERVER_HOST_IP
|
||||
value: chatqna-tgi
|
||||
- name: LLM_SERVER_PORT
|
||||
value: "2080"
|
||||
- name: RERANK_SERVER_HOST_IP
|
||||
value: chatqna-teirerank
|
||||
- name: RERANK_SERVER_PORT
|
||||
value: "2082"
|
||||
- name: RETRIEVER_SERVICE_HOST_IP
|
||||
value: chatqna-retriever-usvc
|
||||
- name: EMBEDDING_SERVICE_HOST_IP
|
||||
value: chatqna-embedding-usvc
|
||||
- name: EMBEDDING_SERVER_HOST_IP
|
||||
value: chatqna-tei
|
||||
- name: EMBEDDING_SERVER_PORT
|
||||
value: "2081"
|
||||
- name: GUARDRAIL_SERVICE_HOST_IP
|
||||
value: chatqna-guardrails-usvc
|
||||
- name: GUARDRAIL_SERVICE_PORT
|
||||
value: "9090"
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
|
||||
@@ -27,71 +27,6 @@ data:
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_EMBEDDING_ENDPOINT: "http://chatqna-tei"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-llm-uservice-config
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TGI_LLM_ENDPOINT: "http://chatqna-tgi"
|
||||
HUGGINGFACEHUB_API_TOKEN: "insert-your-huggingface-token-here"
|
||||
HF_HOME: "/tmp/.cache/huggingface"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: ConfigMap
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc-config
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
data:
|
||||
TEI_RERANKING_ENDPOINT: "http://chatqna-teirerank"
|
||||
http_proxy: ""
|
||||
https_proxy: ""
|
||||
no_proxy: ""
|
||||
LOGFLAG: ""
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/configmap.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -313,56 +248,6 @@ spec:
|
||||
app.kubernetes.io/name: data-prep
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 6000
|
||||
targetPort: 6000
|
||||
protocol: TCP
|
||||
name: embedding-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 9000
|
||||
targetPort: 9000
|
||||
protocol: TCP
|
||||
name: llm-uservice
|
||||
selector:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -392,31 +277,6 @@ spec:
|
||||
app.kubernetes.io/name: redis-vector-db
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
type: ClusterIP
|
||||
ports:
|
||||
- port: 8000
|
||||
targetPort: 8000
|
||||
protocol: TCP
|
||||
name: reranking-usvc
|
||||
selector:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/service.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -687,162 +547,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/embedding-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-embedding-usvc
|
||||
labels:
|
||||
helm.sh/chart: embedding-usvc-1.0.0
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: embedding-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-embedding-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/embedding-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: embedding-usvc
|
||||
containerPort: 6000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: embedding-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/llm-uservice/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-llm-uservice
|
||||
labels:
|
||||
helm.sh/chart: llm-uservice-1.0.0
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: llm-uservice
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-llm-uservice-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: false
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/llm-tgi:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: llm-uservice
|
||||
containerPort: 9000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: llm-uservice
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/redis-vector-db/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -915,84 +619,6 @@ spec:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/reranking-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: chatqna-reranking-usvc
|
||||
labels:
|
||||
helm.sh/chart: reranking-usvc-1.0.0
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
app.kubernetes.io/version: "v1.0"
|
||||
app.kubernetes.io/managed-by: Helm
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app.kubernetes.io/name: reranking-usvc
|
||||
app.kubernetes.io/instance: chatqna
|
||||
spec:
|
||||
securityContext:
|
||||
{}
|
||||
containers:
|
||||
- name: chatqna
|
||||
envFrom:
|
||||
- configMapRef:
|
||||
name: chatqna-reranking-usvc-config
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
drop:
|
||||
- ALL
|
||||
readOnlyRootFilesystem: true
|
||||
runAsNonRoot: true
|
||||
runAsUser: 1000
|
||||
seccompProfile:
|
||||
type: RuntimeDefault
|
||||
image: "opea/reranking-tei:latest"
|
||||
imagePullPolicy: IfNotPresent
|
||||
ports:
|
||||
- name: reranking-usvc
|
||||
containerPort: 8000
|
||||
protocol: TCP
|
||||
volumeMounts:
|
||||
- mountPath: /tmp
|
||||
name: tmp
|
||||
livenessProbe:
|
||||
failureThreshold: 24
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
readinessProbe:
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
startupProbe:
|
||||
failureThreshold: 120
|
||||
httpGet:
|
||||
path: v1/health_check
|
||||
port: reranking-usvc
|
||||
initialDelaySeconds: 5
|
||||
periodSeconds: 5
|
||||
resources:
|
||||
{}
|
||||
volumes:
|
||||
- name: tmp
|
||||
emptyDir: {}
|
||||
---
|
||||
# Source: chatqna/charts/retriever-usvc/templates/deployment.yaml
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1369,16 +995,20 @@ spec:
|
||||
containers:
|
||||
- name: chatqna
|
||||
env:
|
||||
- name: LLM_SERVICE_HOST_IP
|
||||
value: chatqna-llm-uservice
|
||||
- name: RERANK_SERVICE_HOST_IP
|
||||
value: chatqna-reranking-usvc
|
||||
- name: LLM_SERVER_HOST_IP
|
||||
value: chatqna-tgi
|
||||
- name: LLM_SERVER_PORT
|
||||
value: "2080"
|
||||
- name: RERANK_SERVER_HOST_IP
|
||||
value: chatqna-teirerank
|
||||
- name: RERANK_SERVER_PORT
|
||||
value: "2082"
|
||||
- name: RETRIEVER_SERVICE_HOST_IP
|
||||
value: chatqna-retriever-usvc
|
||||
- name: EMBEDDING_SERVICE_HOST_IP
|
||||
value: chatqna-embedding-usvc
|
||||
- name: GUARDRAIL_SERVICE_HOST_IP
|
||||
value: chatqna-guardrails-usvc
|
||||
- name: EMBEDDING_SERVER_HOST_IP
|
||||
value: chatqna-tei
|
||||
- name: EMBEDDING_SERVER_PORT
|
||||
value: "2081"
|
||||
securityContext:
|
||||
allowPrivilegeEscalation: false
|
||||
capabilities:
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna-guardrails chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi guardrails-tgi"
|
||||
service_list="chatqna-guardrails chatqna-ui dataprep-redis retriever-redis guardrails-tgi"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -35,17 +35,19 @@ function start_services() {
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export GUARDRAIL_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=8008
|
||||
export GUARDRAIL_SERVICE_PORT=9090
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export GURADRAILS_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
|
||||
@@ -120,14 +122,6 @@ function validate_microservices() {
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_services \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# retrieval microservice
|
||||
@@ -147,14 +141,6 @@ function validate_microservices() {
|
||||
"tei-reranking-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_services \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank" \
|
||||
"reranking-tei-gaudi-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_services \
|
||||
"${ip_address}:8008/generate" \
|
||||
@@ -163,22 +149,6 @@ function validate_microservices() {
|
||||
"tgi-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"llm-tgi-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
# tgi for guardrails service
|
||||
validate_services \
|
||||
"${ip_address}:8088/generate" \
|
||||
"generated_text" \
|
||||
"tgi-guardrails" \
|
||||
"tgi-guardrails-server" \
|
||||
'{"inputs":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}'
|
||||
|
||||
# guardrails microservice
|
||||
validate_services \
|
||||
"${ip_address}:9090/v1/guardrails" \
|
||||
@@ -186,14 +156,13 @@ function validate_microservices() {
|
||||
"guardrails" \
|
||||
"guardrails-tgi-gaudi-server" \
|
||||
'{"text":"How do you buy a tiger in the US?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
# Curl the Mega Service
|
||||
validate_services \
|
||||
"${ip_address}:8888/v1/chatqna" \
|
||||
"billion" \
|
||||
"data: " \
|
||||
"mega-chatqna" \
|
||||
"chatqna-gaudi-guardrails-server" \
|
||||
'{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
|
||||
@@ -1,251 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
function build_docker_images() {
|
||||
cd $WORKPATH/docker_image_build
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna-no-wrapper chatqna-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
docker pull ghcr.io/huggingface/tei-gaudi:latest
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8005"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export REDIS_HOST=${ip_address}
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=8005
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6008/v1/dataprep/get_file"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6009/v1/dataprep/delete_file"
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose -f compose_no_wrapper.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 500 ]]; do
|
||||
docker logs tgi-gaudi-server > ${LOG_PATH}/tgi_service_start.log
|
||||
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 1s
|
||||
n=$((n+1))
|
||||
done
|
||||
}
|
||||
|
||||
function validate_service() {
|
||||
local URL="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
local DOCKER_NAME="$4"
|
||||
local INPUT_DATA="$5"
|
||||
|
||||
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
|
||||
cd $LOG_PATH
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
|
||||
else
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
||||
fi
|
||||
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
|
||||
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
|
||||
|
||||
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
||||
|
||||
# check response status
|
||||
if [ "$HTTP_STATUS" -ne "200" ]; then
|
||||
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
||||
exit 1
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
||||
fi
|
||||
# check response body
|
||||
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
|
||||
exit 1
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content is as expected."
|
||||
fi
|
||||
|
||||
sleep 1s
|
||||
}
|
||||
|
||||
function validate_microservices() {
|
||||
# Check if the microservices are running correctly.
|
||||
|
||||
# tei for embedding service
|
||||
validate_service \
|
||||
"${ip_address}:8090/embed" \
|
||||
"[[" \
|
||||
"tei-embedding" \
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep" \
|
||||
"Data preparation succeeded" \
|
||||
"dataprep_upload_file" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep upload link
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep" \
|
||||
"Data preparation succeeded" \
|
||||
"dataprep_upload_link" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep/get_file
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep/get_file" \
|
||||
'{"name":' \
|
||||
"dataprep_get" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep/delete_file
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep/delete_file" \
|
||||
'{"status":true}' \
|
||||
"dataprep_del" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# retrieval microservice
|
||||
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
|
||||
validate_service \
|
||||
"${ip_address}:7000/v1/retrieval" \
|
||||
"retrieved_docs" \
|
||||
"retrieval-microservice" \
|
||||
"retriever-redis-server" \
|
||||
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
|
||||
|
||||
# tei for rerank microservice
|
||||
validate_service \
|
||||
"${ip_address}:8808/rerank" \
|
||||
'{"index":1,"score":' \
|
||||
"tei-rerank" \
|
||||
"tei-reranking-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_service \
|
||||
"${ip_address}:8005/generate" \
|
||||
"generated_text" \
|
||||
"tgi-llm" \
|
||||
"tgi-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
# Curl the Mega Service
|
||||
validate_service \
|
||||
"${ip_address}:8888/v1/chatqna" \
|
||||
"data: " \
|
||||
"chatqna-megaservice" \
|
||||
"chatqna-gaudi-backend-server" \
|
||||
'{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_frontend() {
|
||||
cd $WORKPATH/ui/svelte
|
||||
local conda_env_name="OPEA_e2e"
|
||||
export PATH=${HOME}/miniforge3/bin/:$PATH
|
||||
if conda info --envs | grep -q "$conda_env_name"; then
|
||||
echo "$conda_env_name exist!"
|
||||
else
|
||||
conda create -n ${conda_env_name} python=3.12 -y
|
||||
fi
|
||||
source activate ${conda_env_name}
|
||||
|
||||
sed -i "s/localhost/$ip_address/g" playwright.config.ts
|
||||
|
||||
conda install -c conda-forge nodejs -y
|
||||
npm install && npm ci && npx playwright install --with-deps
|
||||
node -v && npm -v && pip list
|
||||
|
||||
exit_status=0
|
||||
npx playwright test || exit_status=$?
|
||||
|
||||
if [ $exit_status -ne 0 ]; then
|
||||
echo "[TEST INFO]: ---------frontend test failed---------"
|
||||
exit $exit_status
|
||||
else
|
||||
echo "[TEST INFO]: ---------frontend test passed---------"
|
||||
fi
|
||||
}
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||
docker compose stop && docker compose rm -f
|
||||
}
|
||||
|
||||
function main() {
|
||||
|
||||
stop_docker
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_time=$(date +%s)
|
||||
start_services
|
||||
end_time=$(date +%s)
|
||||
duration=$((end_time-start_time))
|
||||
echo "Mega service start duration is $duration s"
|
||||
|
||||
if [ "${mode}" == "perf" ]; then
|
||||
python3 $WORKPATH/tests/chatqna_benchmark.py
|
||||
elif [ "${mode}" == "" ]; then
|
||||
validate_microservices
|
||||
validate_megaservice
|
||||
# validate_frontend
|
||||
fi
|
||||
|
||||
stop_docker
|
||||
echo y | docker system prune
|
||||
|
||||
}
|
||||
|
||||
main
|
||||
@@ -1,256 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -e
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
function build_docker_images() {
|
||||
cd $WORKPATH/docker_image_build
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna-no-wrapper chatqna-ui chatqna-conversation-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export REDIS_HOST=${ip_address}
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=6006
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=9009
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/get_file"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/delete_file"
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose -f compose_no_wrapper.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 500 ]]; do
|
||||
docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log
|
||||
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 1s
|
||||
n=$((n+1))
|
||||
done
|
||||
}
|
||||
|
||||
function validate_service() {
|
||||
local URL="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
local DOCKER_NAME="$4"
|
||||
local INPUT_DATA="$5"
|
||||
|
||||
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
|
||||
cd $LOG_PATH
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
|
||||
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
|
||||
else
|
||||
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
||||
fi
|
||||
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
|
||||
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
|
||||
|
||||
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
||||
|
||||
# check response status
|
||||
if [ "$HTTP_STATUS" -ne "200" ]; then
|
||||
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
||||
exit 1
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
||||
fi
|
||||
# check response body
|
||||
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
|
||||
exit 1
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content is as expected."
|
||||
fi
|
||||
|
||||
sleep 1s
|
||||
}
|
||||
|
||||
function validate_microservices() {
|
||||
# Check if the microservices are running correctly.
|
||||
|
||||
# tei for embedding service
|
||||
validate_service \
|
||||
"${ip_address}:6006/embed" \
|
||||
"[[" \
|
||||
"tei-embedding" \
|
||||
"tei-embedding-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep" \
|
||||
"Data preparation succeeded" \
|
||||
"dataprep_upload_file" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep upload link
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep" \
|
||||
"Data preparation succeeded" \
|
||||
"dataprep_upload_link" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep/get_file
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep/get_file" \
|
||||
'{"name":' \
|
||||
"dataprep_get" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# test /v1/dataprep/delete_file
|
||||
validate_service \
|
||||
"http://${ip_address}:6007/v1/dataprep/delete_file" \
|
||||
'{"status":true}' \
|
||||
"dataprep_del" \
|
||||
"dataprep-redis-server"
|
||||
|
||||
# retrieval microservice
|
||||
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
|
||||
validate_service \
|
||||
"${ip_address}:7000/v1/retrieval" \
|
||||
"retrieved_docs" \
|
||||
"retrieval-microservice" \
|
||||
"retriever-redis-server" \
|
||||
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
|
||||
|
||||
# tei for rerank microservice
|
||||
validate_service \
|
||||
"${ip_address}:8808/rerank" \
|
||||
'{"index":1,"score":' \
|
||||
"tei-rerank" \
|
||||
"tei-reranking-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_service \
|
||||
"${ip_address}:9009/generate" \
|
||||
"generated_text" \
|
||||
"tgi-llm" \
|
||||
"tgi-service" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
# Curl the Mega Service
|
||||
validate_service \
|
||||
"${ip_address}:8888/v1/chatqna" \
|
||||
"data: " \
|
||||
"chatqna-megaservice" \
|
||||
"chatqna-xeon-backend-server" \
|
||||
'{"messages": "What is the revenue of Nike in 2023?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_frontend() {
|
||||
echo "[ TEST INFO ]: --------- frontend test started ---------"
|
||||
cd $WORKPATH/ui/svelte
|
||||
local conda_env_name="OPEA_e2e"
|
||||
export PATH=${HOME}/miniforge3/bin/:$PATH
|
||||
if conda info --envs | grep -q "$conda_env_name"; then
|
||||
echo "$conda_env_name exist!"
|
||||
else
|
||||
conda create -n ${conda_env_name} python=3.12 -y
|
||||
fi
|
||||
source activate ${conda_env_name}
|
||||
echo "[ TEST INFO ]: --------- conda env activated ---------"
|
||||
|
||||
sed -i "s/localhost/$ip_address/g" playwright.config.ts
|
||||
|
||||
conda install -c conda-forge nodejs -y
|
||||
npm install && npm ci && npx playwright install --with-deps
|
||||
node -v && npm -v && pip list
|
||||
|
||||
exit_status=0
|
||||
npx playwright test || exit_status=$?
|
||||
|
||||
if [ $exit_status -ne 0 ]; then
|
||||
echo "[TEST INFO]: ---------frontend test failed---------"
|
||||
exit $exit_status
|
||||
else
|
||||
echo "[TEST INFO]: ---------frontend test passed---------"
|
||||
fi
|
||||
}
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
docker compose stop && docker compose rm -f
|
||||
}
|
||||
|
||||
function main() {
|
||||
|
||||
stop_docker
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_time=$(date +%s)
|
||||
start_services
|
||||
end_time=$(date +%s)
|
||||
duration=$((end_time-start_time))
|
||||
echo "Mega service start duration is $duration s" && sleep 1s
|
||||
|
||||
if [ "${mode}" == "perf" ]; then
|
||||
python3 $WORKPATH/tests/chatqna_benchmark.py
|
||||
elif [ "${mode}" == "" ]; then
|
||||
validate_microservices
|
||||
echo "==== microservices validated ===="
|
||||
validate_megaservice
|
||||
echo "==== megaservice validated ===="
|
||||
# validate_frontend
|
||||
# echo "==== frontend validated ===="
|
||||
fi
|
||||
|
||||
stop_docker
|
||||
echo y | docker system prune
|
||||
|
||||
}
|
||||
|
||||
main
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi nginx"
|
||||
service_list="chatqna chatqna-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -33,7 +33,7 @@ function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8005"
|
||||
@@ -42,27 +42,22 @@ function start_services() {
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=8005
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6008/v1/dataprep/get_file"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6009/v1/dataprep/delete_file"
|
||||
export llm_service_devices=all
|
||||
export tei_embedding_devices=all
|
||||
export FRONTEND_SERVICE_IP=${host_ip}
|
||||
export FRONTEND_SERVICE_PORT=5173
|
||||
export BACKEND_SERVICE_NAME=chatqna
|
||||
export BACKEND_SERVICE_IP=${host_ip}
|
||||
export BACKEND_SERVICE_PORT=8888
|
||||
export NGINX_PORT=80
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
docker compose -f compose.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 500 ]]; do
|
||||
@@ -128,14 +123,6 @@ function validate_microservices() {
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_service \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding-microservice" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
@@ -184,14 +171,6 @@ function validate_microservices() {
|
||||
"tei-reranking-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_service \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank-microservice" \
|
||||
"reranking-tei-gaudi-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_service \
|
||||
"${ip_address}:8005/generate" \
|
||||
@@ -200,14 +179,6 @@ function validate_microservices() {
|
||||
"tgi-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_service \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm-microservice" \
|
||||
"llm-tgi-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
@@ -264,9 +235,13 @@ function main() {
|
||||
duration=$((end_time-start_time))
|
||||
echo "Mega service start duration is $duration s"
|
||||
|
||||
if [ "${mode}" == "perf" ]; then
|
||||
python3 $WORKPATH/tests/chatqna_benchmark.py
|
||||
elif [ "${mode}" == "" ]; then
|
||||
validate_microservices
|
||||
validate_megaservice
|
||||
validate_frontend
|
||||
# validate_frontend
|
||||
fi
|
||||
|
||||
stop_docker
|
||||
echo y | docker system prune
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui chatqna-conversation-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi nginx"
|
||||
service_list="chatqna chatqna-ui chatqna-conversation-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -29,38 +29,34 @@ function build_docker_images() {
|
||||
}
|
||||
|
||||
function start_services() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export REDIS_HOST=${ip_address}
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=6006
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=9009
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/get_file"
|
||||
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/delete_file"
|
||||
export FRONTEND_SERVICE_IP=${host_ip}
|
||||
export FRONTEND_SERVICE_PORT=5173
|
||||
export BACKEND_SERVICE_NAME=chatqna
|
||||
export BACKEND_SERVICE_IP=${host_ip}
|
||||
export BACKEND_SERVICE_PORT=8888
|
||||
export NGINX_PORT=80
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
docker compose -f compose.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||
|
||||
n=0
|
||||
until [[ "$n" -ge 500 ]]; do
|
||||
docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log
|
||||
@@ -125,14 +121,6 @@ function validate_microservices() {
|
||||
"tei-embedding-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_service \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding-microservice" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
@@ -181,14 +169,6 @@ function validate_microservices() {
|
||||
"tei-reranking-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_service \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank-microservice" \
|
||||
"reranking-tei-xeon-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_service \
|
||||
"${ip_address}:9009/generate" \
|
||||
@@ -197,14 +177,6 @@ function validate_microservices() {
|
||||
"tgi-service" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_service \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm-microservice" \
|
||||
"llm-tgi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
@@ -249,7 +221,7 @@ function validate_frontend() {
|
||||
}
|
||||
|
||||
function stop_docker() {
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
||||
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
||||
docker compose stop && docker compose rm -f
|
||||
}
|
||||
|
||||
@@ -270,8 +242,8 @@ function main() {
|
||||
echo "==== microservices validated ===="
|
||||
validate_megaservice
|
||||
echo "==== megaservice validated ===="
|
||||
validate_frontend
|
||||
echo "==== frontend validated ===="
|
||||
# validate_frontend
|
||||
# echo "==== frontend validated ===="
|
||||
fi
|
||||
|
||||
stop_docker
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui dataprep-qdrant embedding-tei retriever-qdrant reranking-tei llm-tgi"
|
||||
service_list="chatqna chatqna-ui dataprep-qdrant retriever-qdrant"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker images && sleep 1s
|
||||
@@ -32,21 +32,20 @@ function start_services() {
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6040"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:6041"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:6042"
|
||||
export QDRANT_HOST=${ip_address}
|
||||
export QDRANT_PORT=6333
|
||||
export INDEX_NAME="rag-qdrant"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_PORT=6044
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export MEGA_SERVICE_PORT=8912
|
||||
export EMBEDDING_SERVER_PORT=6040
|
||||
export RETRIEVER_SERVICE_PORT=6045
|
||||
export RERANK_SERVICE_PORT=6046
|
||||
export LLM_SERVICE_PORT=6047
|
||||
export RERANK_SERVER_PORT=6041
|
||||
export LLM_SERVER_PORT=6042
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8912/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6043/v1/dataprep"
|
||||
|
||||
@@ -114,14 +113,6 @@ function validate_microservices() {
|
||||
"tei-embedding-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_services \
|
||||
"${ip_address}:6044/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
|
||||
validate_services \
|
||||
@@ -154,14 +145,6 @@ function validate_microservices() {
|
||||
"tei-reranking-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_services \
|
||||
"${ip_address}:6046/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank" \
|
||||
"reranking-tei-xeon-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# tgi for llm service
|
||||
validate_services \
|
||||
"${ip_address}:6042/generate" \
|
||||
@@ -169,15 +152,6 @@ function validate_microservices() {
|
||||
"tgi-llm" \
|
||||
"tgi-service" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:6047/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"llm-tgi-server" \
|
||||
'{"query":"Deep Learning"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm-hpu llm-vllm"
|
||||
service_list="chatqna chatqna-ui dataprep-redis retriever-redis llm-vllm-hpu"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
@@ -33,17 +33,17 @@ function start_services() {
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export vLLM_LLM_ENDPOINT="http://${ip_address}:8007"
|
||||
export LLM_SERVICE_PORT=9000
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=8007
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
|
||||
@@ -102,14 +102,6 @@ function validate_microservices() {
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_services \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":\[' \
|
||||
"embedding" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# retrieval microservice
|
||||
@@ -129,14 +121,6 @@ function validate_microservices() {
|
||||
"tei-reranking-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_services \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank" \
|
||||
"reranking-tei-gaudi-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# vllm for llm service
|
||||
validate_services \
|
||||
"${ip_address}:8007/v1/completions" \
|
||||
@@ -144,15 +128,6 @@ function validate_microservices() {
|
||||
"vllm-llm" \
|
||||
"vllm-gaudi-server" \
|
||||
'{"model": "Intel/neural-chat-7b-v3-3","prompt": "What is Deep Learning?","max_tokens": 32,"temperature": 0}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"llm-vllm-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
|
||||
@@ -20,7 +20,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm vllm"
|
||||
service_list="chatqna chatqna-ui dataprep-redis retriever-redis vllm"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -36,17 +36,17 @@ function start_services() {
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export vLLM_LLM_ENDPOINT="http://${ip_address}:9009"
|
||||
export LLM_SERVICE_PORT=9000
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=6006
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=9009
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
|
||||
@@ -104,14 +104,6 @@ function validate_microservices() {
|
||||
"tei-embedding-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_services \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":\[' \
|
||||
"embedding" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# retrieval microservice
|
||||
@@ -131,14 +123,6 @@ function validate_microservices() {
|
||||
"tei-reranking-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_services \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank" \
|
||||
"reranking-tei-xeon-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# vllm for llm service
|
||||
validate_services \
|
||||
"${ip_address}:9009/v1/completions" \
|
||||
@@ -146,15 +130,6 @@ function validate_microservices() {
|
||||
"vllm-llm" \
|
||||
"vllm-service" \
|
||||
'{"model": "Intel/neural-chat-7b-v3-3", "prompt": "What is Deep Learning?", "max_tokens": 32, "temperature": 0}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"llm-vllm-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
@@ -217,7 +192,7 @@ function main() {
|
||||
elif [ "${mode}" == "" ]; then
|
||||
validate_microservices
|
||||
validate_megaservice
|
||||
validate_frontend
|
||||
#validate_frontend
|
||||
fi
|
||||
|
||||
stop_docker
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm-ray-hpu llm-vllm-ray"
|
||||
service_list="chatqna chatqna-ui dataprep-redis retriever-redis llm-vllm-ray-hpu"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
|
||||
@@ -34,17 +34,17 @@ function start_services() {
|
||||
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
|
||||
export vLLM_RAY_LLM_ENDPOINT="http://${ip_address}:8006"
|
||||
export LLM_SERVICE_PORT=9000
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export RERANK_SERVER_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export RERANK_SERVER_PORT=8808
|
||||
export LLM_SERVER_PORT=8006
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
|
||||
@@ -103,14 +103,6 @@ function validate_microservices() {
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_services \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":\[' \
|
||||
"embedding" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# retrieval microservice
|
||||
@@ -130,14 +122,6 @@ function validate_microservices() {
|
||||
"tei-reranking-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
|
||||
|
||||
# rerank microservice
|
||||
validate_services \
|
||||
"${ip_address}:8000/v1/reranking" \
|
||||
"Deep learning is..." \
|
||||
"rerank" \
|
||||
"reranking-tei-gaudi-server" \
|
||||
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
|
||||
|
||||
# vllm-on-ray for llm service
|
||||
validate_services \
|
||||
"${ip_address}:8006/v1/chat/completions" \
|
||||
@@ -145,15 +129,6 @@ function validate_microservices() {
|
||||
"vllm-ray-llm" \
|
||||
"vllm-ray-gaudi-server" \
|
||||
'{"model": "Intel/neural-chat-7b-v3-3", "messages": [{"role": "user", "content": "What is Deep Learning?"}]}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"llm-vllm-ray-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna-without-rerank chatqna-ui dataprep-redis embedding-tei retriever-redis llm-tgi"
|
||||
service_list="chatqna-without-rerank chatqna-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -34,15 +34,16 @@ function start_services() {
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8005"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export REDIS_HOST=${ip_address}
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=8090
|
||||
export LLM_SERVER_PORT=8005
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6008/v1/dataprep/get_file"
|
||||
@@ -117,14 +118,6 @@ function validate_microservices() {
|
||||
"tei-embedding-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_service \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding-microservice" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
@@ -172,15 +165,6 @@ function validate_microservices() {
|
||||
"tgi-llm" \
|
||||
"tgi-gaudi-server" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_service \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm-microservice" \
|
||||
"llm-tgi-gaudi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
|
||||
@@ -19,7 +19,7 @@ function build_docker_images() {
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="chatqna-without-rerank chatqna-ui chatqna-conversation-ui dataprep-redis embedding-tei retriever-redis llm-tgi"
|
||||
service_list="chatqna-without-rerank chatqna-ui chatqna-conversation-ui dataprep-redis retriever-redis"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
|
||||
@@ -34,15 +34,16 @@ function start_services() {
|
||||
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
|
||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
|
||||
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
|
||||
export REDIS_URL="redis://${ip_address}:6379"
|
||||
export REDIS_HOST=${ip_address}
|
||||
export INDEX_NAME="rag-redis"
|
||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_HOST_IP=${ip_address}
|
||||
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVER_HOST_IP=${ip_address}
|
||||
export EMBEDDING_SERVER_PORT=6006
|
||||
export LLM_SERVER_PORT=9009
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
|
||||
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
|
||||
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/get_file"
|
||||
@@ -116,14 +117,6 @@ function validate_microservices() {
|
||||
"tei-embedding-server" \
|
||||
'{"inputs":"What is Deep Learning?"}'
|
||||
|
||||
# embedding microservice
|
||||
validate_service \
|
||||
"${ip_address}:6000/v1/embeddings" \
|
||||
'"text":"What is Deep Learning?","embedding":[' \
|
||||
"embedding-microservice" \
|
||||
"embedding-tei-server" \
|
||||
'{"text":"What is Deep Learning?"}'
|
||||
|
||||
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
||||
|
||||
# test /v1/dataprep upload file
|
||||
@@ -171,15 +164,6 @@ function validate_microservices() {
|
||||
"tgi-llm" \
|
||||
"tgi-service" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_service \
|
||||
"${ip_address}:9000/v1/chat/completions" \
|
||||
"data: " \
|
||||
"llm-microservice" \
|
||||
"llm-tgi-server" \
|
||||
'{"query":"What is Deep Learning?"}'
|
||||
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
|
||||
Reference in New Issue
Block a user