vLLM support for DocSum (#885)

* Add model parameter for DocSumGateway in gateway.py file

Signed-off-by: sgurunat <gurunath.s@intel.com>

* Add langchain vllm support for DocSum along with authentication support for vllm endpoints

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated docker_compose_llm.yaml and README file with vLLM information

Signed-off-by: sgurunat <gurunath.s@intel.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated docsum-vllm Dockerfile into llm-compose-cd.yaml under github workflows

Signed-off-by: sgurunat <gurunath.s@intel.com>

* Updated llm-compose.yaml file to include vllm sumarization docker build

Signed-off-by: sgurunat <gurunath.s@intel.com>

---------

Signed-off-by: sgurunat <gurunath.s@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: lvliang-intel <liang1.lv@intel.com>
This commit is contained in:
sgurunat
2024-11-13 12:50:15 +05:30
committed by GitHub
parent f5c60f10b1
commit 550325d8cb
10 changed files with 334 additions and 0 deletions

View File

@@ -433,6 +433,8 @@ class DocSumGateway(Gateway):
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
language=chat_request.language if chat_request.language else "auto",
model=chat_request.model if chat_request.model else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={data["type"]: prompt}, llm_parameters=parameters

View File

@@ -0,0 +1,28 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
FROM python:3.11-slim
ARG ARCH="cpu"
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev
RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/
USER user
COPY comps /home/user/comps
RUN pip install --no-cache-dir --upgrade pip setuptools && \
if [ ${ARCH} = "cpu" ]; then pip install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cpu; fi && \
pip install --no-cache-dir -r /home/user/comps/llms/summarization/vllm/langchain/requirements.txt
ENV PYTHONPATH=$PYTHONPATH:/home/user
WORKDIR /home/user/comps/llms/summarization/vllm/langchain
ENTRYPOINT ["bash", "entrypoint.sh"]

View File

@@ -0,0 +1,112 @@
# Document Summary vLLM Microservice
This microservice leverages LangChain to implement summarization strategies and facilitate LLM inference using vLLM.
[vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products).
## 🚀1. Start Microservice with Python 🐍 (Option 1)
To start the LLM microservice, you need to install python packages first.
### 1.1 Install Requirements
```bash
pip install -r requirements.txt
```
### 1.2 Start LLM Service
```bash
export HF_TOKEN=${your_hf_api_token}
export LLM_MODEL_ID=${your_hf_llm_model}
docker run -p 8008:80 -v ./data:/data --name llm-docsum-vllm --shm-size 1g opea/vllm:hpu --model-id ${LLM_MODEL_ID}
```
### 1.3 Verify the vLLM Service
```bash
curl http://${your_ip}:8008/v1/chat/completions \
-X POST \
-H "Content-Type: application/json" \
-d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning? "}]}'
```
### 1.4 Start LLM Service with Python Script
```bash
export vLLM_ENDPOINT="http://${your_ip}:8008"
python llm.py
```
## 🚀2. Start Microservice with Docker 🐳 (Option 2)
If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a vLLM/vLLM service with docker.
To setup or build the vLLM image follow the instructions provided in [vLLM Gaudi](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/vllm/langchain#22-vllm-on-gaudi)
### 2.1 Setup Environment Variables
In order to start vLLM and LLM services, you need to setup the following environment variables first.
```bash
export HF_TOKEN=${your_hf_api_token}
export vLLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
```
### 2.2 Build Docker Image
```bash
cd ../../../../../
docker build -t opea/llm-docsum-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/vllm/langchain/Dockerfile .
```
To start a docker container, you have two options:
- A. Run Docker with CLI
- B. Run Docker with Docker Compose
You can choose one as needed.
### 2.3 Run Docker with CLI (Option A)
```bash
docker run -d --name="llm-docsum-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-docsum-vllm:latest
```
### 2.4 Run Docker with Docker Compose (Option B)
```bash
docker compose -f docker_compose_llm.yaml up -d
```
## 🚀3. Consume LLM Service
### 3.1 Check Service Status
```bash
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
```
### 3.2 Consume LLM Service
```bash
# Enable streaming to receive a streaming response. By default, this is set to True.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en"}' \
-H 'Content-Type: application/json'
# Disable streaming to receive a non-streaming response.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en", "streaming":false}' \
-H 'Content-Type: application/json'
# Use Chinese mode. By default, language is set to "en"
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"2024年9月26日北京——今日英特尔正式发布英特尔® 至强® 6性能核处理器代号Granite Rapids为AI、数据分析、科学计算等计算密集型业务提供卓越性能。", "max_tokens":32, "language":"zh", "streaming":false}' \
-H 'Content-Type: application/json'
```

View File

@@ -0,0 +1,2 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

View File

@@ -0,0 +1,44 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
version: "3.8"
services:
vllm-service:
image: opea/vllm:hpu
container_name: vllm-gaudi-server
ports:
- "8008:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HF_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
LLM_MODEL_ID: ${LLM_MODEL_ID}
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --enforce-eager --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80
llm:
image: opea/llm-docsum-vllm:latest
container_name: llm-docsum-vllm-server
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
vLLM_ENDPOINT: ${vLLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
LLM_MODEL_ID: ${LLM_MODEL_ID}
restart: unless-stopped
networks:
default:
driver: bridge

View File

@@ -0,0 +1,8 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
pip --no-cache-dir install -r requirements-runtime.txt
python llm.py

View File

@@ -0,0 +1,118 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
from fastapi.responses import StreamingResponse
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.llms import VLLMOpenAI
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, ServiceType, opea_microservices, register_microservice
from comps.cores.mega.utils import get_access_token
logger = CustomLogger("llm_docsum")
logflag = os.getenv("LOGFLAG", False)
# Environment variables
TOKEN_URL = os.getenv("TOKEN_URL")
CLIENTID = os.getenv("CLIENTID")
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
MODEL_ID = os.getenv("LLM_MODEL_ID", None)
templ_en = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""
templ_zh = """请简要概括以下内容:
"{text}"
概况:"""
def post_process_text(text: str):
if text == " ":
return "data: @#$\n\n"
if text == "\n":
return "data: <br/>\n\n"
if text.isspace():
return None
new_text = text.replace(" ", "@#$")
return f"data: {new_text}\n\n"
@register_microservice(
name="opea_service@llm_docsum",
service_type=ServiceType.LLM,
endpoint="/v1/chat/docsum",
host="0.0.0.0",
port=9000,
)
async def llm_generate(input: LLMParamsDoc):
if logflag:
logger.info(input)
if input.language in ["en", "auto"]:
templ = templ_en
elif input.language in ["zh"]:
templ = templ_zh
else:
raise NotImplementedError('Please specify the input language in "en", "zh", "auto"')
PROMPT = PromptTemplate.from_template(templ)
if logflag:
logger.info("After prompting:")
logger.info(PROMPT)
access_token = (
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
)
headers = {}
if access_token:
headers = {"Authorization": f"Bearer {access_token}"}
llm_endpoint = os.getenv("vLLM_ENDPOINT", "http://localhost:8080")
model = input.model if input.model else os.getenv("LLM_MODEL_ID")
llm = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base=llm_endpoint + "/v1",
model_name=model,
default_headers=headers,
max_tokens=input.max_tokens,
top_p=input.top_p,
streaming=input.streaming,
temperature=input.temperature,
presence_penalty=input.repetition_penalty,
)
llm_chain = load_summarize_chain(llm=llm, prompt=PROMPT)
texts = text_splitter.split_text(input.query)
# Create multiple documents
docs = [Document(page_content=t) for t in texts]
if input.streaming:
async def stream_generator():
from langserve.serialization import WellKnownLCSerializer
_serializer = WellKnownLCSerializer()
async for chunk in llm_chain.astream_log(docs):
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
if logflag:
logger.info(data)
yield f"data: {data}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(stream_generator(), media_type="text/event-stream")
else:
response = await llm_chain.ainvoke(docs)
response = response["output_text"]
if logflag:
logger.info(response)
return GeneratedDoc(text=response, prompt=input.query)
if __name__ == "__main__":
# Split text
text_splitter = CharacterTextSplitter()
opea_microservices["opea_service@llm_docsum"].start()

View File

@@ -0,0 +1 @@
langserve

View File

@@ -0,0 +1,15 @@
docarray[full]
fastapi
huggingface_hub
langchain #==0.1.12
langchain-huggingface
langchain-openai
langchain_community
langchainhub
opentelemetry-api
opentelemetry-exporter-otlp
opentelemetry-sdk
prometheus-fastapi-instrumentator
shortuuid
transformers
uvicorn