Fix benchmark scripts (#1517)

- Align benchmark default config:  
1. Update default helm charts version. 
2. Add `# mandatory` comment. 
3. Update default model ID for LLM. 
- Fix deploy issue:  
1. Support different `replicaCount` for w/ w/o rerank test. 
2. Add `max_num_seqs` for vllm. 
3. Add resource setting for tune mode. 

- Fix Benchmark issue: 
1. Update `user_queries` and `concurrency` setting. 
2. Remove invalid parameters. 
3. Fix `dataset` and `prompt` setting. And dataset ingest into db. 
5. Fix the benchmark hang issue with large user queries. Update `"processes": 16` will fix this issue. 
6. Update the eval_path setting logical. 
- Optimize benchmark readme. 
- Optimize the log path to make the logs more readable. 

Signed-off-by: chensuyue <suyue.chen@intel.com>
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: letonghan <letong.han@intel.com>
This commit is contained in:
chen, suyue
2025-02-28 10:30:54 +08:00
committed by GitHub
parent 78f8ae524d
commit 3d8009aa91
6 changed files with 641 additions and 207 deletions

View File

@@ -23,13 +23,14 @@ def read_yaml(file_path):
return None
def construct_deploy_config(deploy_config, target_node, max_batch_size=None):
"""Construct a new deploy config based on the target node number and optional max_batch_size.
def construct_deploy_config(deploy_config, target_node, batch_param_value=None, test_mode="oob"):
"""Construct a new deploy config based on the target node number and optional batch parameter value.
Args:
deploy_config: Original deploy config dictionary
target_node: Target node number to match in the node array
max_batch_size: Optional specific max_batch_size value to use
batch_param_value: Optional specific batch parameter value to use
test_mode: Test mode, either 'oob' or 'tune'
Returns:
A new deploy config with single values for node and instance_num
@@ -51,21 +52,79 @@ def construct_deploy_config(deploy_config, target_node, max_batch_size=None):
# Set the single node value
new_config["node"] = target_node
# Update instance_num for each service based on the same index
for service_name, service_config in new_config.get("services", {}).items():
if "replicaCount" in service_config:
instance_nums = service_config["replicaCount"]
if isinstance(instance_nums, list):
if len(instance_nums) != len(nodes):
raise ValueError(
f"instance_num array length ({len(instance_nums)}) for service {service_name} "
f"doesn't match node array length ({len(nodes)})"
)
service_config["replicaCount"] = instance_nums[node_index]
# First determine which llm replicaCount to use based on teirerank.enabled
services = new_config.get("services", {})
teirerank_enabled = services.get("teirerank", {}).get("enabled", True)
# Update max_batch_size if specified
if max_batch_size is not None and "llm" in new_config["services"]:
new_config["services"]["llm"]["max_batch_size"] = max_batch_size
# Process each service's configuration
for service_name, service_config in services.items():
# Handle replicaCount
if "replicaCount" in service_config:
if service_name == "llm" and isinstance(service_config["replicaCount"], dict):
replica_counts = service_config["replicaCount"]
service_config["replicaCount"] = (
replica_counts["with_teirerank"] if teirerank_enabled else replica_counts["without_teirerank"]
)
if isinstance(service_config["replicaCount"], list):
if len(service_config["replicaCount"]) < len(nodes):
raise ValueError(
f"replicaCount array length ({len(service_config['replicaCount'])}) for service {service_name} "
f"smaller than node array length ({len(nodes)})"
)
service_config["replicaCount"] = service_config["replicaCount"][node_index]
# Handle resources based on test_mode
if "resources" in service_config:
resources = service_config["resources"]
if test_mode == "tune" or resources.get("enabled", False):
# Keep resource configuration but remove enabled field
resources.pop("enabled", None)
else:
# Remove resource configuration in OOB mode when disabled
service_config.pop("resources")
# Handle model parameters for LLM service
if service_name == "llm" and "model_params" in service_config:
model_params = service_config["model_params"]
engine = service_config.get("engine", "tgi")
# Get engine-specific parameters
engine_params = model_params.get(engine, {})
# Handle batch parameters
if "batch_params" in engine_params:
batch_params = engine_params["batch_params"]
if test_mode == "tune" or batch_params.get("enabled", False):
# Keep batch parameters configuration but remove enabled field
batch_params.pop("enabled", None)
# Update batch parameter value if specified
if batch_param_value is not None:
if engine == "tgi":
batch_params["max_batch_size"] = str(batch_param_value)
elif engine == "vllm":
batch_params["max_num_seqs"] = str(batch_param_value)
else:
engine_params.pop("batch_params")
# Handle token parameters
if "token_params" in engine_params:
token_params = engine_params["token_params"]
if test_mode == "tune" or token_params.get("enabled", False):
# Keep token parameters configuration but remove enabled field
token_params.pop("enabled", None)
else:
# Remove token parameters in OOB mode when disabled
engine_params.pop("token_params")
# Update model_params with engine-specific parameters only
model_params.clear()
model_params[engine] = engine_params
# Remove model_params if empty or if engine_params is empty
if not model_params or not engine_params:
service_config.pop("model_params")
return new_config
@@ -84,13 +143,18 @@ def pull_helm_chart(chart_pull_url, version, chart_name):
return untar_dir
def main(yaml_file, target_node=None):
def main(yaml_file, target_node=None, test_mode="oob"):
"""Main function to process deployment configuration.
Args:
yaml_file: Path to the YAML configuration file
target_node: Optional target number of nodes to deploy. If not specified, will process all nodes.
test_mode: Test mode, either "oob" (out of box) or "tune". Defaults to "oob".
"""
if test_mode not in ["oob", "tune"]:
print("Error: test_mode must be either 'oob' or 'tune'")
return None
config = read_yaml(yaml_file)
if config is None:
print("Failed to read YAML file.")
@@ -116,7 +180,7 @@ def main(yaml_file, target_node=None):
# Pull the Helm chart
chart_pull_url = f"oci://ghcr.io/opea-project/charts/{chart_name}"
version = deploy_config.get("version", "1.1.0")
version = deploy_config.get("version", "0-latest")
chart_dir = pull_helm_chart(chart_pull_url, version, chart_name)
if not chart_dir:
return
@@ -140,20 +204,61 @@ def main(yaml_file, target_node=None):
continue
try:
# Process max_batch_sizes
max_batch_sizes = deploy_config.get("services", {}).get("llm", {}).get("max_batch_size", [])
if not isinstance(max_batch_sizes, list):
max_batch_sizes = [max_batch_sizes]
# Process batch parameters based on engine type
services = deploy_config.get("services", {})
llm_config = services.get("llm", {})
if "model_params" in llm_config:
model_params = llm_config["model_params"]
engine = llm_config.get("engine", "tgi")
# Get engine-specific parameters
engine_params = model_params.get(engine, {})
# Handle batch parameters
batch_params = []
if "batch_params" in engine_params:
key = "max_batch_size" if engine == "tgi" else "max_num_seqs"
batch_params = engine_params["batch_params"].get(key, [])
param_name = key
if not isinstance(batch_params, list):
batch_params = [batch_params]
# Skip multiple iterations if batch parameter is empty
if batch_params == [""] or not batch_params:
batch_params = [None]
else:
batch_params = [None]
param_name = "batch_param"
# Get timeout and interval from deploy config for check-ready
timeout = deploy_config.get("timeout", 1000) # default 1000s
interval = deploy_config.get("interval", 5) # default 5s
values_file_path = None
for i, max_batch_size in enumerate(max_batch_sizes):
print(f"\nProcessing max_batch_size: {max_batch_size}")
# Create benchmark output directory
benchmark_dir = os.path.join(os.getcwd(), "benchmark_output")
os.makedirs(benchmark_dir, exist_ok=True)
for i, batch_param in enumerate(batch_params):
print(f"\nProcessing {test_mode} mode {param_name}: {batch_param}")
# Create subdirectory for this iteration with test mode in the name
iteration_dir = os.path.join(
benchmark_dir,
f"benchmark_{test_mode}_node{node}_batch{batch_param if batch_param is not None else 'default'}",
)
os.makedirs(iteration_dir, exist_ok=True)
# Construct new deploy config
new_deploy_config = construct_deploy_config(deploy_config, node, max_batch_size)
new_deploy_config = construct_deploy_config(deploy_config, node, batch_param, test_mode)
# Write the new deploy config to a temporary file
temp_config_file = f"temp_deploy_config_{node}_{max_batch_size}.yaml"
temp_config_file = (
f"temp_deploy_config_{node}.yaml"
if batch_param is None
else f"temp_deploy_config_{node}_{batch_param}.yaml"
)
try:
with open(temp_config_file, "w") as f:
yaml.dump(new_deploy_config, f)
@@ -178,6 +283,8 @@ def main(yaml_file, target_node=None):
if match:
values_file_path = match.group(1)
print(f"Captured values_file_path: {values_file_path}")
# Copy values file to iteration directory
shutil.copy2(values_file_path, iteration_dir)
else:
print("values_file_path not found in the output")
@@ -198,12 +305,20 @@ def main(yaml_file, target_node=None):
values_file_path,
"--update-service",
]
result = subprocess.run(cmd, check=True)
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
if result.returncode != 0:
print(
f"Update failed for {node} nodes configuration with max_batch_size {max_batch_size}"
)
break # Skip remaining max_batch_sizes for this node
print(f"Update failed for {node} nodes configuration with {param_name} {batch_param}")
break # Skip remaining {param_name} for this node
# Update values_file_path from the output
match = re.search(r"values_file_path: (\S+)", result.stdout)
if match:
values_file_path = match.group(1)
print(f"Updated values_file_path: {values_file_path}")
# Copy values file to iteration directory
shutil.copy2(values_file_path, iteration_dir)
else:
print("values_file_path not found in the output")
# Wait for deployment to be ready
print("\nWaiting for deployment to be ready...")
@@ -215,26 +330,42 @@ def main(yaml_file, target_node=None):
"--namespace",
namespace,
"--check-ready",
"--timeout",
str(timeout),
"--interval",
str(interval),
]
try:
result = subprocess.run(cmd, check=True)
print("Deployments are ready!")
result = subprocess.run(
cmd, check=False
) # Changed to check=False to handle return code manually
if result.returncode == 0:
print("Deployments are ready!")
# Run benchmark only if deployment is ready
run_benchmark(
benchmark_config=benchmark_config,
chart_name=chart_name,
namespace=namespace,
node_num=node,
llm_model=deploy_config.get("services", {}).get("llm", {}).get("model_id", ""),
output_dir=iteration_dir,
)
else:
print(
f"Deployments are not ready after timeout period during "
f"{'deployment' if i == 0 else 'update'} for {node} nodes. "
f"Skipping remaining iterations."
)
break # Exit the batch parameter loop for current node
except subprocess.CalledProcessError as e:
print(f"Deployments status failed with returncode: {e.returncode}")
# Run benchmark
run_benchmark(
benchmark_config=benchmark_config,
chart_name=chart_name,
namespace=namespace,
llm_model=deploy_config.get("services", {}).get("llm", {}).get("model_id", ""),
)
print(f"Error while checking deployment status: {str(e)}")
break # Exit the batch parameter loop for current node
except Exception as e:
print(
f"Error during {'deployment' if i == 0 else 'update'} for {node} nodes with max_batch_size {max_batch_size}: {str(e)}"
f"Error during {'deployment' if i == 0 else 'update'} for {node} nodes with {param_name} {batch_param}: {str(e)}"
)
break # Skip remaining max_batch_sizes for this node
break # Skip remaining {param_name} for this node
finally:
# Clean up the temporary file
if os.path.exists(temp_config_file):
@@ -287,6 +418,7 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Deploy and benchmark with specific node configuration.")
parser.add_argument("yaml_file", help="Path to the YAML configuration file")
parser.add_argument("--target-node", type=int, help="Optional: Target number of nodes to deploy.", default=None)
parser.add_argument("--test-mode", type=str, help="Test mode, either 'oob' (out of box) or 'tune'.", default="oob")
args = parser.parse_args()
main(args.yaml_file, args.target_node)
main(args.yaml_file, args.target_node, args.test_mode)