Fix left issue of tgi version update (#1121)

Signed-off-by: chensuyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
chen, suyue
2024-11-13 15:42:42 +08:00
committed by GitHub
parent 7adbba6add
commit 393367e9f1
3 changed files with 59 additions and 56 deletions

View File

@@ -432,57 +432,66 @@ curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \
-H "Content-Type: application/json"
```
### Profile Microservices
To further analyze MicroService Performance, users could follow the instructions to profile MicroServices.
To further analyze MicroService Performance, users could follow the instructions to profile MicroServices.
#### 1. vLLM backend Service
Users could follow previous section to testing vLLM microservice or ChatQnA MegaService.
By default, vLLM profiling is not enabled. Users could start and stop profiling by following commands.
##### Start vLLM profiling
Users could follow previous section to testing vLLM microservice or ChatQnA MegaService.
By default, vLLM profiling is not enabled. Users could start and stop profiling by following commands.
```bash
curl http://${host_ip}:9009/start_profile \
-H "Content-Type: application/json" \
-d '{"model": "Intel/neural-chat-7b-v3-3"}'
```
Users would see below docker logs from vllm-service if profiling is started correctly.
```bash
INFO api_server.py:361] Starting profiler...
INFO api_server.py:363] Profiler started.
INFO: x.x.x.x:35940 - "POST /start_profile HTTP/1.1" 200 OK
```
After vLLM profiling is started, users could start asking questions and get responses from vLLM MicroService
or ChatQnA MicroService.
##### Stop vLLM profiling
By following command, users could stop vLLM profliing and generate a *.pt.trace.json.gz file as profiling result
under /mnt folder in vllm-service docker instance.
```bash
# vLLM Service
curl http://${host_ip}:9009/stop_profile \
-H "Content-Type: application/json" \
-d '{"model": "Intel/neural-chat-7b-v3-3"}'
```
Users would see below docker logs from vllm-service if profiling is stopped correctly.
```bash
INFO api_server.py:368] Stopping profiler...
INFO api_server.py:370] Profiler stopped.
INFO: x.x.x.x:41614 - "POST /stop_profile HTTP/1.1" 200 OK
```
After vllm profiling is stopped, users could use below command to get the *.pt.trace.json.gz file under /mnt folder.
```bash
docker cp vllm-service:/mnt/ .
```
##### Start vLLM profiling
##### Check profiling result
Open a web browser and type "chrome://tracing" or "ui.perfetto.dev", and then load the json.gz file, you should be able
to see the vLLM profiling result as below diagram.
```bash
curl http://${host_ip}:9009/start_profile \
-H "Content-Type: application/json" \
-d '{"model": "Intel/neural-chat-7b-v3-3"}'
```
Users would see below docker logs from vllm-service if profiling is started correctly.
```bash
INFO api_server.py:361] Starting profiler...
INFO api_server.py:363] Profiler started.
INFO: x.x.x.x:35940 - "POST /start_profile HTTP/1.1" 200 OK
```
After vLLM profiling is started, users could start asking questions and get responses from vLLM MicroService
or ChatQnA MicroService.
##### Stop vLLM profiling
By following command, users could stop vLLM profliing and generate a \*.pt.trace.json.gz file as profiling result
under /mnt folder in vllm-service docker instance.
```bash
# vLLM Service
curl http://${host_ip}:9009/stop_profile \
-H "Content-Type: application/json" \
-d '{"model": "Intel/neural-chat-7b-v3-3"}'
```
Users would see below docker logs from vllm-service if profiling is stopped correctly.
```bash
INFO api_server.py:368] Stopping profiler...
INFO api_server.py:370] Profiler stopped.
INFO: x.x.x.x:41614 - "POST /stop_profile HTTP/1.1" 200 OK
```
After vllm profiling is stopped, users could use below command to get the \*.pt.trace.json.gz file under /mnt folder.
```bash
docker cp vllm-service:/mnt/ .
```
##### Check profiling result
Open a web browser and type "chrome://tracing" or "ui.perfetto.dev", and then load the json.gz file, you should be able
to see the vLLM profiling result as below diagram.
![image](https://github.com/user-attachments/assets/55c7097e-5574-41dc-97a7-5e87c31bc286)
## 🚀 Launch the UI
### Launch with origin port