Added Initial version of DocSum support for benchmarking scripts for OPEA (#1840)

Signed-off-by: Valtteri Rantala <valtteri.rantala@intel.com>
Co-authored-by: Liang Lv <liang1.lv@intel.com>
Co-authored-by: ZePan110 <ze.pan@intel.com>
This commit is contained in:
vrantala
2025-04-21 05:32:28 +03:00
committed by GitHub
parent 338f81430d
commit 29d449b3ca
3 changed files with 120 additions and 2 deletions

View File

@@ -0,0 +1,87 @@
# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
deploy:
device: gaudi
version: 1.2.0
modelUseHostPath: /mnt/models
HUGGINGFACEHUB_API_TOKEN: "" # mandatory
node: [1]
namespace: ""
node_name: []
timeout: 1000 # timeout in seconds for services to be ready, default 30 minutes
interval: 5 # interval in seconds between service ready checks, default 5 seconds
services:
backend:
resources:
enabled: False
cores_per_instance: "16"
memory_capacity: "8000Mi"
replicaCount: [1]
teirerank:
enabled: False
llm:
engine: vllm # or tgi
model_id: "meta-llama/Llama-3.2-3B-Instruct" # mandatory
replicaCount:
without_teirerank: [1] # When teirerank.enabled is False
resources:
enabled: False
cards_per_instance: 1
model_params:
vllm: # VLLM specific parameters
batch_params:
enabled: True
max_num_seqs: "8" # Each value triggers an LLM service upgrade
token_params:
enabled: True
max_input_length: ""
max_total_tokens: ""
max_batch_total_tokens: ""
max_batch_prefill_tokens: ""
tgi: # TGI specific parameters
batch_params:
enabled: True
max_batch_size: [1] # Each value triggers an LLM service upgrade
token_params:
enabled: False
max_input_length: "1280"
max_total_tokens: "2048"
max_batch_total_tokens: "65536"
max_batch_prefill_tokens: "4096"
docsum-ui:
replicaCount: [1]
whisper:
replicaCount: [1]
llm-uservice:
model_id: "meta-llama/Llama-3.2-3B-Instruct" # mandatory
replicaCount: [1]
nginx:
replicaCount: [1]
benchmark:
# http request behavior related fields
user_queries: [16]
concurrency: [4]
load_shape_type: "constant" # "constant" or "poisson"
poisson_arrival_rate: 1.0 # only used when load_shape_type is "poisson"
warmup_iterations: 10
seed: 1024
collect_service_metric: True
# workload, all of the test cases will run for benchmark
bench_target: ["docsumfixed"] # specify the bench_target for benchmark
dataset: "/home/sdp/upload.txt" # specify the absolute path to the dataset file
summary_type: "stuff"
stream: True
llm:
# specify the llm output token size
max_token_size: [1024]

View File

@@ -12,6 +12,7 @@ from kubernetes import client, config
# only support chatqna for now
service_endpoints = {
"chatqna": "/v1/chatqna",
"docsum": "/v1/docsum",
}
@@ -35,6 +36,9 @@ def construct_benchmark_config(test_suite_config):
"dataset": test_suite_config.get("dataset", ""),
"prompt": test_suite_config.get("prompt", [10]),
"llm_max_token_size": test_suite_config.get("llm", {}).get("max_token_size", [128]),
"collect_service_metric": test_suite_config.get("collect_service_metric", False),
"summary_type": test_suite_config.get("summary_type", "auto"),
"stream": test_suite_config.get("stream", "auto"),
}
@@ -144,6 +148,8 @@ def _create_yaml_content(service, base_url, bench_target, test_phase, num_querie
"llm-model": test_params["llm_model"],
"deployment-type": test_params["deployment_type"],
"load-shape": load_shape,
"summary_type": test_params.get("summary_type", "auto"),
"stream": test_params.get("stream", True),
},
"runs": [{"name": test_phase, "users": concurrency, "max-request": num_queries}],
}
@@ -373,7 +379,9 @@ def run_benchmark(benchmark_config, chart_name, namespace, node_num=1, llm_model
"user_queries": parsed_data["user_queries"], # num of user queries
"random_prompt": False, # whether to use random prompt, set to False by default
"run_time": "30m", # The max total run time for the test suite, set to 60m by default
"collect_service_metric": False, # whether to collect service metrics, set to False by default
"collect_service_metric": (
parsed_data["collect_service_metric"] if parsed_data["collect_service_metric"] else False
), # Metrics collection set to False by default
"llm_model": llm_model, # The LLM model used for the test
"deployment_type": "k8s", # Default is "k8s", can also be "docker"
"service_ip": None, # Leave as None for k8s, specify for Docker
@@ -398,9 +406,15 @@ def run_benchmark(benchmark_config, chart_name, namespace, node_num=1, llm_model
"dataset": parsed_data["dataset"],
"prompt": parsed_data["prompt"],
"llm_max_token_size": parsed_data["llm_max_token_size"],
"summary_type": parsed_data["summary_type"],
"stream": parsed_data["stream"],
}
if parsed_data["dataset"]: # This checks if user provided dataset/document for DocSum service
dataset = parsed_data["dataset"]
else:
dataset = None
query_data = None
os.environ["MODEL_NAME"] = test_suite_config.get("llm_model", "meta-llama/Meta-Llama-3-8B-Instruct")
# Do benchmark in for-loop for different llm_max_token_size
@@ -428,6 +442,21 @@ def run_benchmark(benchmark_config, chart_name, namespace, node_num=1, llm_model
"max_output": llm_max_token, # max number of output tokens
"k": 1, # number of retrieved documents
}
if chart_name == "docsum":
case_data = {
"run_test": True,
"service_name": "docsum",
"service_list": [
"docsum",
"docsum-llm-uservice",
"docsum-vllm",
],
"stream": parsed_data["stream"],
"max_output": llm_max_token, # max number of output tokens
"summary_type": parsed_data["summary_type"], # Summary_type for DocSum
"dataset": dataset, # Dataset used for document summary
}
output_folder = _run_service_test(chart_name, case_data, test_suite_config, namespace)
print(f"[OPEA BENCHMARK] 🚀 Test Finished. Output saved in {output_folder}.")

View File

@@ -177,6 +177,8 @@ def configure_models(values, deploy_config):
values[service_name]["EMBEDDING_MODEL_ID"] = model_id
elif service_name == "teirerank":
values[service_name]["RERANK_MODEL_ID"] = model_id
elif service_name == "llm-uservice":
values[service_name]["LLM_MODEL_ID"] = model_id
return values