Upgrade TGI Gaudi version to v2.0.6 (#1088)

Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
This commit is contained in:
lvliang-intel
2024-11-12 14:38:22 +08:00
committed by GitHub
parent f7a7f8aa3f
commit 1ff85f6a85
74 changed files with 94 additions and 85 deletions

View File

@@ -3,7 +3,7 @@
services:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-server
ports:
- "8085:80"

View File

@@ -51,7 +51,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "3006:80"

View File

@@ -25,7 +25,7 @@ The AudioQnA uses the below prebuilt images if you choose a Xeon deployment
Should you desire to use the Gaudi accelerator, two alternate images are used for the embedding and llm services.
For Gaudi:
- tgi-service: ghcr.io/huggingface/tgi-gaudi:2.0.5
- tgi-service: ghcr.io/huggingface/tgi-gaudi:2.0.6
- whisper-gaudi: opea/whisper-gaudi:latest
- speecht5-gaudi: opea/speecht5-gaudi:latest

View File

@@ -271,7 +271,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
name: llm-dependency-deploy-demo
securityContext:
capabilities:

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper-gaudi asr llm-tgi speecht5-gaudi tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper asr llm-tgi speecht5 tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -54,7 +54,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "3006:80"

View File

@@ -29,7 +29,7 @@ function build_docker_images() {
service_list="avatarchatbot whisper-gaudi asr llm-tgi speecht5-gaudi tts wav2lip-gaudi animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -29,7 +29,7 @@ function build_docker_images() {
service_list="avatarchatbot whisper asr llm-tgi speecht5 tts wav2lip animation"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -48,7 +48,7 @@ To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2
# for better performance, set `PREFILL_BATCH_BUCKET_SIZE`, `BATCH_BUCKET_SIZE`, `max-batch-total-tokens`, `max-batch-prefill-tokens`
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} -e PREFILL_BATCH_BUCKET_SIZE=1 -e BATCH_BUCKET_SIZE=8 --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.6 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2 --max-batch-total-tokens 65536 --max-batch-prefill-tokens 2048
```
### Prepare Dataset

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -38,7 +38,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -192,7 +192,7 @@ For users in China who are unable to download models directly from Huggingface,
export HF_TOKEN=${your_hf_token}
export HF_ENDPOINT="https://hf-mirror.com"
model_name="Intel/neural-chat-7b-v3-3"
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id $model_name --max-input-tokens 1024 --max-total-tokens 2048
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.6 --model-id $model_name --max-input-tokens 1024 --max-total-tokens 2048
```
2. Offline
@@ -206,7 +206,7 @@ For users in China who are unable to download models directly from Huggingface,
```bash
export HF_TOKEN=${your_hf_token}
export model_path="/path/to/model"
docker run -p 8008:80 -v $model_path:/data --name tgi_service --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id /data --max-input-tokens 1024 --max-total-tokens 2048
docker run -p 8008:80 -v $model_path:/data --name tgi_service --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HUGGING_FACE_HUB_TOKEN=$HF_TOKEN -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.6 --model-id /data --max-input-tokens 1024 --max-total-tokens 2048
```
### Setup Environment Variables

View File

@@ -78,7 +78,7 @@ services:
MAX_WARMUP_SEQUENCE_LENGTH: 512
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8005:80"

View File

@@ -26,7 +26,7 @@ services:
TEI_ENDPOINT: http://tei-embedding-service:80
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tgi-guardrails-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-guardrails-server
ports:
- "8088:80"
@@ -117,7 +117,7 @@ services:
MAX_WARMUP_SEQUENCE_LENGTH: 512
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8008:80"

View File

@@ -57,7 +57,7 @@ services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8005:80"

View File

@@ -48,16 +48,16 @@ f810f3b4d329 opea/embedding-tei:latest "python e
2fa17d84605f opea/dataprep-redis:latest "python prepare_doc_…" 2 minutes ago Up 2 minutes 0.0.0.0:6007->6007/tcp, :::6007->6007/tcp dataprep-redis-server
69e1fb59e92c opea/retriever-redis:latest "/home/user/comps/re…" 2 minutes ago Up 2 minutes 0.0.0.0:7000->7000/tcp, :::7000->7000/tcp retriever-redis-server
313b9d14928a opea/reranking-tei:latest "python reranking_te…" 2 minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp reranking-tei-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.6 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
174bd43fa6b5 ghcr.io/huggingface/tei-gaudi:latest "text-embeddings-rou…" 2 minutes ago Up 2 minutes 0.0.0.0:8090->80/tcp, :::8090->80/tcp tei-embedding-gaudi-server
74084469aa33 redis/redis-stack:7.2.0-v9 "/entrypoint.sh" 2 minutes ago Up 2 minutes 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp, 0.0.0.0:8001->8001/tcp, :::8001->8001/tcp redis-vector-db
88399dbc9e43 ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 "text-embeddings-rou…" 2 minutes ago Up 2 minutes 0.0.0.0:8808->80/tcp, :::8808->80/tcp tei-reranking-gaudi-server
```
In this case, `ghcr.io/huggingface/tgi-gaudi:2.0.5` Existed.
In this case, `ghcr.io/huggingface/tgi-gaudi:2.0.6` Existed.
```
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.6 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
```
Next we can check the container logs to get to know what happened during the docker start.
@@ -68,7 +68,7 @@ Check the log of container by:
`docker logs <CONTAINER ID> -t`
View the logs of `ghcr.io/huggingface/tgi-gaudi:2.0.5`
View the logs of `ghcr.io/huggingface/tgi-gaudi:2.0.6`
`docker logs 05c40b636239 -t`
@@ -97,7 +97,7 @@ So just make sure the devices are available.
Here is another failure example:
```
f7a08f9867f9 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 16 seconds ago Exited (2) 14 seconds ago tgi-gaudi-server
f7a08f9867f9 ghcr.io/huggingface/tgi-gaudi:2.0.6 "text-generation-lau…" 16 seconds ago Exited (2) 14 seconds ago tgi-gaudi-server
```
Check the log by `docker logs f7a08f9867f9 -t`.
@@ -114,7 +114,7 @@ View the docker input parameters in `./ChatQnA/docker_compose/intel/hpu/gaudi/co
```
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8008:80"

View File

@@ -25,7 +25,7 @@ Should you desire to use the Gaudi accelerator, two alternate images are used fo
For Gaudi:
- tei-embedding-service: ghcr.io/huggingface/tei-gaudi:latest
- tgi-service: gghcr.io/huggingface/tgi-gaudi:2.0.5
- tgi-service: gghcr.io/huggingface/tgi-gaudi:2.0.6
> [NOTE]
> Please refer to [Xeon README](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/docker_compose/intel/cpu/xeon/README.md) or [Gaudi README](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/docker_compose/intel/hpu/gaudi/README.md) to build the OPEA images. These too will be available on Docker Hub soon to simplify use.

View File

@@ -1103,7 +1103,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: Always
volumeMounts:
- mountPath: /data
@@ -1184,8 +1184,13 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
<<<<<<< HEAD
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: IfNotPresent
=======
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: Always
>>>>>>> e3187be819ad088c24bf1b2cbb419255af0f2be3
volumeMounts:
- mountPath: /data
name: model-volume

View File

@@ -924,7 +924,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: Always
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna-guardrails chatqna-ui dataprep-redis retriever-redis guardrails-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna chatqna-ui dataprep-redis retriever-redis nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest

View File

@@ -23,7 +23,7 @@ function build_docker_images() {
service_list="chatqna chatqna-ui dataprep-redis retriever-redis vllm nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna-without-rerank chatqna-ui dataprep-redis retriever-redis nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna-without-rerank chatqna-ui chatqna-conversation-ui dataprep-redis retriever-redis nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8028:80"

View File

@@ -405,7 +405,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="codegen codegen-ui llm-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: codetrans-tgi-service
ports:
- "8008:80"

View File

@@ -405,7 +405,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="codetrans codetrans-ui llm-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -11,7 +11,7 @@ First of all, you need to build Docker Images locally. This step can be ignored
As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:
```bash
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
```
### 2. Build LLM Image
@@ -53,7 +53,7 @@ docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT
Then run the command `docker images`, you will have the following Docker Images:
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
1. `ghcr.io/huggingface/tgi-gaudi:2.0.6`
2. `opea/llm-docsum-tgi:latest`
3. `opea/docsum:latest`
4. `opea/docsum-ui:latest`

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8008:80"

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -9,7 +9,7 @@ The DocSum application is defined as a Custom Resource (CR) file that the above
The DocSum pipeline uses prebuilt images. The Xeon version uses the prebuilt image `llm-docsum-tgi:latest` which internally leverages the
the image `ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu`. The service is called tgi-svc. Meanwhile, the Gaudi version launches the
service tgi-gaudi-svc, which uses the image `ghcr.io/huggingface/tgi-gaudi:2.0.5`. Both TGI model services serve the model specified in the LLM_MODEL_ID variable that is exported by you. In the below example we use `Intel/neural-chat-7b-v3-3`.
service tgi-gaudi-svc, which uses the image `ghcr.io/huggingface/tgi-gaudi:2.0.6`. Both TGI model services serve the model specified in the LLM_MODEL_ID variable that is exported by you. In the below example we use `Intel/neural-chat-7b-v3-3`.
[NOTE]
Refer to [Docker Xeon README](https://github.com/opea-project/GenAIExamples/blob/main/DocSum/docker_compose/intel/cpu/xeon/README.md) or

View File

@@ -405,7 +405,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="docsum docsum-ui llm-docsum-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -19,7 +19,7 @@ docker run -it --rm \
--ipc=host \
-e HTTPS_PROXY=$https_proxy \
-e HTTP_PROXY=$https_proxy \
ghcr.io/huggingface/tgi-gaudi:2.0.5 \
ghcr.io/huggingface/tgi-gaudi:2.0.6 \
--model-id $model_name \
--max-input-tokens $max_input_tokens \
--max-total-tokens $max_total_tokens \

View File

@@ -11,7 +11,7 @@ First of all, you need to build Docker Images locally. This step can be ignored
As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:
```bash
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
```
### 2. Build LLM Image
@@ -53,7 +53,7 @@ docker build -t opea/faqgen-react-ui:latest --build-arg https_proxy=$https_proxy
Then run the command `docker images`, you will have the following Docker Images:
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
1. `ghcr.io/huggingface/tgi-gaudi:2.0.6`
2. `opea/llm-faqgen-tgi:latest`
3. `opea/faqgen:latest`
4. `opea/faqgen-ui:latest`

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8008:80"

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -47,7 +47,7 @@ spec:
value: 'true'
- name: FLASH_ATTENTION_RECOMPUTE
value: 'true'
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
imagePullPolicy: IfNotPresent
securityContext:
capabilities:

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="faqgen faqgen-ui llm-faqgen-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -40,7 +40,7 @@ services:
ipc: host
command: --model-id ${EMBEDDING_MODEL_ID} --auto-truncate
tgi-gaudi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "6005:80"

View File

@@ -23,7 +23,7 @@ function build_docker_images() {
service_list="graphrag dataprep-neo4j-llamaindex retriever-neo4j-llamaindex chatqna-gaudi-ui-server chatqna-gaudi-nginx-server"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull neo4j:latest
docker images && sleep 1s

View File

@@ -80,7 +80,7 @@ docker build --no-cache -t opea/retriever-multimodal-redis:latest --build-arg ht
Build TGI Gaudi image
```bash
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
```
Build lvm-tgi microservice image
@@ -118,7 +118,7 @@ Then run the command `docker images`, you will have the following 8 Docker Image
1. `opea/dataprep-multimodal-redis:latest`
2. `opea/lvm-tgi:latest`
3. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
3. `ghcr.io/huggingface/tgi-gaudi:2.0.6`
4. `opea/retriever-multimodal-redis:latest`
5. `opea/embedding-multimodal:latest`
6. `opea/embedding-multimodal-bridgetower:latest`

View File

@@ -69,7 +69,7 @@ services:
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tgi-gaudi:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-llava-gaudi-server
ports:
- "8399:80"
@@ -84,6 +84,10 @@ services:
PREFILL_BATCH_BUCKET_SIZE: 1
BATCH_BUCKET_SIZE: 1
MAX_BATCH_TOTAL_TOKENS: 4096
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -25,7 +25,7 @@ function build_docker_images() {
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding-multimodal retriever-multimodal-redis lvm-tgi dataprep-multimodal-redis"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -80,7 +80,7 @@ services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "3006:80"

View File

@@ -23,7 +23,7 @@ function build_docker_images() {
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-gaudi-server
ports:
- "8008:80"

View File

@@ -362,7 +362,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.6"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="translation translation-ui llm-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
volumes:
- "./data:/data"
runtime: habana

View File

@@ -18,7 +18,7 @@ docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_prox
### 2. Pull TGI Gaudi Image
```bash
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
```
### 3. Build MegaService Docker Image
@@ -43,7 +43,7 @@ docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$htt
Then run the command `docker images`, you will have the following 5 Docker Images:
1. `ghcr.io/huggingface/tgi-gaudi:2.0.5`
1. `ghcr.io/huggingface/tgi-gaudi:2.0.6`
2. `opea/lvm-tgi:latest`
3. `opea/visualqna:latest`
4. `opea/visualqna-ui:latest`

View File

@@ -3,7 +3,7 @@
services:
llava-tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: tgi-llava-gaudi-server
ports:
- "8399:80"

View File

@@ -21,7 +21,7 @@ function build_docker_images() {
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
docker compose -f build.yaml build --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}